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Introduction

This dissertation is divided in two parts: the first one concerns set-membership

theory for model estimation and identification, while the second one deals with

remote laboratories of automatic control, and in particular with the Automatic

Control Telelab, a remote lab developed at University of Siena which allows

the remote identification and control of physical processes, and which has

been used to apply set-membership techniques described in the first part on

real systems.

In the first part, the set-membership approach to system estimation (identifi-

cation) is addressed. The aim of the estimation problem is to obtain a dynamic

model of the system from noisy input-output measurements. Depending on

the hypothesis on the noise, it is possible to distinguish between a statisti-

cal and a deterministic approach. The main difference between the classical

(statistical) estimation and the set-membership (deterministic) one lies in the

fact that in statistical estimation noise is represented as a stochastic process

(usually a filtered white noise), while in set-membership estimation noise is

supposed to be unknown but bounded, i.e. the only knowledge about noise

consists in its bounds evaluated in a given norm.

In statistical estimation, uncertainty is described in terms of confidence in-
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tervals (soft bounds). On the contrary, in the deterministic approach a set

of all admissible solutions is found (hard bounds). In this case, such a set

contains all the feasible solutions of the problem, thus providing an evalua-

tion of the uncertainty associated to the estimation problem. For this reason

this approach is usually called set-membership. Moreover, while the statistical

estimation deals with the average case, the deterministic theory usually con-

siders the worst-case, that is the estimate that shows the best performance in

a worst-case setting.

Set-membership theory was born at the end of the Sixties and was applied to

problems of state estimation of dynamical systems [1, 2]. In the Eighties, this

approach deserved interest due to the development of robust control theory;

in fact, by giving hard bounds on the uncertainty, this theory provides models

that are useful in the robust control context.

In the first part of the thesis the main aspects of the set-membership approach

to system estimation and identification are described. The purpose is not to

provide a complete survey of these topics, but to present a general description

of the main concepts and a more detailed treatment of some specific problems

of interest in set-membership identification. In particular, the main original

contribution of this thesis regards conditional estimation problems and opti-

mal input design. In the former case, the evaluation of the optimality degree

of almost-optimal algorithms, for different model classes, is investigated. The

optimal input design problem concerns the choice of the best input to apply

when performing system identification in a set-membership context. In par-

ticular, the case of noise bounded in the �2 norm (energy bounded noise) is

analyzed in depth.

In the following a short description of chapter contents is reported.

In Chapter 1 the general set-membership estimation problem is introduced,

along with all definitions and main concepts which will be used in the following
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development. Properties of different estimation algorithms are also described,

and the classes of pointwise and set estimators are introduced.

In Chapter 2 a more detailed description of pointwise estimators is reported.

Particular emphasis is given to the linear setting, for which the main classes

of pointwise estimators are described. Optimality and asymptotic properties

of such estimators are also outlined.

Chapter 3 is focused on the theory of conditional estimation (or restricted-

complexity estimation), in which an estimate is restricted to belong to a pre-

defined set.

In Chapter 4 an overview of orthonormal basis functions is reported. Such

functions are commonly used to obtain restricted-complexity model classes, as

described in Chapter 3. Particular emphasis is given to Laguerre functions,

and to the optimal choice of pole location. New tight bounds on the optimality

degree of suboptimal algorithms for different pole location of the basis function

are reported.

The problem of optimal input design is described in Chapter 5. A general

overview of such problem along with some results in the noise free case is

addressed. New results about input design in the energy bounded noise case

are also reported.

In Chapter 6 an example of application of set-membership and statistical iden-

tification is reported. The identification experiment has been performed by

means of the Automatic Control Telelab, the remote laboratory described in

Part 2.

The second part of this thesis is focused on remote laboratories of automatic

control and in particular on the Automatic Control Telelab (ACT), a remote

lab developed at the Dipartimento di Ingegneria dell’Informazione of the Uni-

versity of Siena. By means of remote labs it is possible to perform remote
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experiments, through the Internet or other kinds of networks, on real pro-

cesses. This is the main feature which distinguishes remote labs from virtual

labs which only provide software simulation of physical systems. The state of

the art along with a comparison between virtual and remote labs is reported.

The Automatic Control Telelab is mainly used for educational purpose, with

the aim of helping students to practice their knowledge of control systems in an

easy way and from any computer connected to the Internet. A detailed descrip-

tion of the features of the ACT is reported. A key feature which distinguishes

the ACT from other remote labs is the possibility to design a user-defined

controller by means of a Simulink model in a very easy way.

A typical session description is reported, in which it is explained how to interact

with remote processes. The user can choose the kind of controller to use among

a set of predefined ones, or can design a new controller by himself. During the

experiment, it is possible to change controller parameters as well as reference

signals, and to view on-line input and output signals and a live video of the

experiment.

A new feature of the ACT is the presence of a student competition, a mechanism

which allows students to compete in designing the best controller for achieving

some predefined performance. Performances are automatically evaluated and

the designed controllers are ranked accordingly.

An important novelty, introduced by ACT is the presence of tools for per-

forming system identification of the remote processes. Through this feature

it is possible to choose the input to apply to the system in order to perform

a system identification procedure by means of statistic and set-membership

techniques.



Part I

Set-Membership System

Identification: Theoretical

Developments





1

Set-membership estimation

theory

In this chapter the basic concepts about set-membership estimation theory are

presented. The formalism is similar to that used in [3] to describe the optimal

algorithms theory. Through this formalism it is possible to formulate a wide

variety of problems in the same context.

The general estimation problem can be summarized as follows:

Given an unknown element x, find an estimate of the function S(x),

based on a priori information K and on measurements of the func-

tion F (x) corrupted by additive noise e.

Of course the solution of this problem depends on the functions S(·) and F (·),
on the a priori information and in particular on the assumptions on the noise

e. Set-membership theory deals with unknown but bounded (UBB) noise, that

is noise bounded in some norm.

The chapter is organized as follows. In the first section the estimation prob-
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lem is formalized and its essential elements are described (spaces, operators,

sets, etc.). In Section 1.2 the main properties of estimation algorithms are

reported and the concepts of optimality and almost-optimality are introduced.

In Sections 1.3 and 1.4 the main classes of pointwise and set estimators are

described, while in Section 1.5 a specific set-membership system identification

problem is cast in the considered framework.

1.1 Problem formulation

1.1.1 Spaces and operators

A generic estimation problem can be formulated in the following spaces:

- X: problem elements space;

- Y : measurements space;

- Z: solution space.

We suppose that X, Y and Z are normed linear spaces, of dimension respec-

tively n, m, p. Moreover, we denote with ‖ · ‖X , ‖ · ‖Y and ‖ · ‖Z the associated

norms in such spaces.

We define solution operator S : X → Z, the function which associates to every

element x ∈ X, the quantity we want to estimate

z = S(x). (1.1)

Estimation is based on available information on x, which is fundamentally of

two different kinds.
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1. A priori information

It is usually represented by a subset K of X, to which the problem

element must belong, i.e.

x ∈ K ⊆ X. (1.2)

The set K typically has some structural characteristics (i.e. convexity,

symmetry, etc.). A common example is

K = {x ∈ X : ‖L(x− x0)‖X ≤ 1}

where L is a linear operator and x0 ∈ X.

2. A posteriori information (measurements)

It is represented by the knowledge of a certain function F (x), where

F : X → Y is the information operator. Usually, the knowledge of F (x)

is not exact, but it is corrupted by noise on the measurement process. If

we assume additive noise, the available observations y ∈ Y are

y = F (x) + e. (1.3)

A crucial aspect of the estimation problem is the hypothesis on the noise e. In

fact, the procedure adopted to solve the problem as well as the characteristics

of the solution (optimality, asymptotic behaviour, etc.) strongly depend on

this hypothesis.

Unknown But Bounded (UBB) noise. The noise e is assumed to be

bounded in norm

‖e‖Y ≤ ε (1.4)

for some constant ε > 0.

We define an estimation algorithm (or estimator) as an operator Φ(·), Φ : Y →
Z, which provides an approximation Φ(y) of the quantity to be estimated

S(x). In other words, the target of the estimation problem is to determine
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Figure 1.1: Illustrative picture of a generic estimation problem.
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an algorithm Φ, such that Φ(y) � S(x). A schematic representation of the

problem previously described is reported in Fig.1.1.

In general, Φ(·) can be a single- or multi-valued function. It is denoted as

pointwise estimator if Φ(·) associates one element (point) in the solution space

to every vector in the measurements space. On the contrary, a set estimator

is a function Φ(·) which determines a set of elements in the Z space. In the

following we will denote by Φ(·) a generic pointwise estimator.

1.1.2 Uncertain sets, admissible sets

Due to the hypothesis of UBB noise, the main elements of the estimation prob-

lem can be characterized by means of suitable sets (set–membership approach).

In the following, the sets which play an important role are defined.

• Measurement Uncertain Set

MUSy = {ỹ ∈ Y : ‖y − ỹ‖Y ≤ ε}. (1.5)

It is the set containing all the measurements whose distance from the

observation y is less or equal to ε. The MUSy contains all the “exact”

information that could have generated the noisy measurement y. In

fact, if x is the unknown element to be estimated, and y is the available

observation, it follows immediately that F (x) ∈MUSy.

• Estimation Uncertain Set

EUSΦ = Φ(MUSy). (1.6)

For a fixed estimator Φ, it is the set containing all estimates that can be

obtained from measurements belonging to MUSy.

• Feasible Parameter Set

FPSy = {x ∈ K : ‖y − F (x)‖Y ≤ ε}. (1.7)
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It is the set of the problem elements which are compatible with all the

available information: the structure of the operator F (·), the hypothesis
of UBB noise, the a priori informationK and the observed measurements

y. Note that if FPSy is empty, the observations are not consistent with

the problem formulation, that is with F (·), K and ε.

• Feasible Solution Set

FSSy = S(FPSy). (1.8)

It is the set of admissible solutions, compatible with the available infor-

mation in the estimation problem.

In several problems of parametric and non parametric estimation, the solution

operator S(·) coincides with the identity operator, that is the purpose of the

estimation problem is the same element of the problem (S(x) = x). In this

case, FPSy coincides with FSSy, and it is usually called feasible set.

In general, the previously defined sets may have a very complex structure (non–

convex, non–connected, etc.). A special situation occurs when the information

operator is linear, that is F (x) = Fx, as it happens in many problems of

interest. Note that in this case, if K = X, FPSy is the counterimage through

F of the setMUSy
⋂R(F ), whereR(F ) denotes the image of F . The structure

of FPSy depends on the used norm for the measurement space, under the UBB

hypothesis, as described in Table 1.11.

‖ · ‖Y FPSy

�∞ polytope

�2 ellipsoid

�1 polytope

Table 1.1: Structure of FPSy, depending on the Y norm (linear case).

1In the following, it will be denoted by �∞, �2, �1 the usual norms on semi–infinite spaces,

as well as the vectorial norms ∞, 2, 1 in spaces of finite dimension.
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If m < n, FPSy is not bounded. On the contrary, if m ≥ n (the most

frequent situation in estimation problems), then FPSy is bounded if and only

if rank(F ) = n. This condition is sometime denoted as sufficient information

[4].

Analyzing these sets and their properties, some geometric features commonly

used play an important role, like the concepts of center and radius. In the

following some useful definitions are reported.

Definition 1.1 Consider a set I ⊂ Z. The Chebyshev center of I is defined

as

cen(I) = arg inf
z∈Z

sup
z̃∈I

‖z − z̃‖Z . (1.9)

The Chebyshev radius of I is given by

rad(I) = sup
z̃∈I

‖cen(I)− z̃‖Z . (1.10)

In other words, cen(I) is the center of the minimum radius ball (in the Z

norm) containing I. Note that in general:

- cen(I) is not unique.

- cen(I) may not belong to I (even if I is convex).

For example, if I is a polytope and ‖ · ‖Z = �1, it is possible to find examples

where cen(I) /∈ I for spaces Z of dimension greater than 2. If the set I has a

symmetry center, obviously cen(I) coincides with it.

Definition 1.2 The diameter of a set I ⊂ Z is given by

diam(I) = sup
z1,z2∈I

‖z1 − z2‖Z . (1.11)

From the previous definitions it follows immediately that

rad(I) ≤ diam(I) ≤ 2 rad(I), ∀I ⊂ Z. (1.12)
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1.1.3 Errors, radius of information

Let Φ be a pointwise estimator. A measure of the quality of the estimation

provided by Φ is given by the distance

‖S(x)− Φ(y)‖Z (1.13)

which depends on the unknown element x as well as on the observation y.

In the context of set–membership estimation, it is common to evaluate (1.13)

with respect to the worst case problem element and/or the worst measurement.

That is, we use error measures in a worst-case setting. It is possible to define

the following errors.

- Y-local error

Ey(Φ, ε) = sup
x∈FPSy

‖S(x)− Φ(y)‖Z (1.14)

- X-local error

Ex(Φ, ε) = sup
y∈MUSF (x)

‖S(x)− Φ(y)‖Z (1.15)

- Global error

E(Φ, ε) = sup
x∈X

Ex(Φ, ε) = sup
y∈Y0

Ey(Φ, ε) (1.16)

where Y0 = {y ∈ Y : FPSy �= ∅}.

Remark 1.1 In the following, we will denote the feasible sets FSSmy and the

errors E(Φ, ε,m), when it is important to emphasize the dependance on the

number of observations m.

It is useful to stress the difference between Y -local error and X-local error.

The former is an a posteriori measure of the goodness of the estimation, since

it is based on the knowledge of the observed measurements and on the set

FPSy. On the contrary, the latter can be considered as an a priori measure,
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since it is function of the problem element (usually unknown) and it is not

based on the observations. The meaning of the previously considered errors

will be deeply investigated in Section 1.2.

The minimum global error which can be achieved by an estimation algorithm

is defined as radius of information

R(ε) = inf
Φ
E(Φ, ε). (1.17)

The name “radius” comes from the fact that R(ε) can be computed from the

set of the feasible solutions in the following way [5].

Proposition 1.1

R(ε) = sup
y∈Y0

rad(FSSy).

Another variable commonly used to evaluate the performance of estimators is

the diameter of information, defined as

D(ε) = sup
y∈Y0

sup
x1,x2∈FPSy

‖S(x1)− S(x2)‖Z = sup
y∈Y0

diam(FSSy). (1.18)

From (1.12) it follows immediately

R(ε) ≤ D(ε) ≤ 2R(ε). (1.19)

1.2 Estimation algorithm properties

In this section some properties of pointwise estimators are reported. They

mainly refer to the notion of estimation error and radius of information, pre-

viously introduced.
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1.2.1 Optimal algorithms

Optimality of an algorithm is relative to the type of error which is minimized.

Definition 1.3 An algorithm Φ∗ is X-locally optimal if

Ex(Φ
∗, ε) ≤ Ex(Φ, ε) ∀x ∈ X, ∀Φ.

Definition 1.4 An algorithm Φ∗ is Y -locally optimal if

Ey(Φ
∗, ε) ≤ Ey(Φ, ε) ∀y ∈ Y0, ∀Φ.

Definition 1.5 An algorithm Φ∗ is globally optimal if

E(Φ∗, ε) ≤ E(Φ, ε) ∀Φ.

From the last definition and from (1.17) it follows immediately that for a

globally optimal algorithm, the global error is equal to the radius of information

E(Φ∗, ε) = R(ε).

Note the different meaning of the concept of local optimality, in the Defini-

tions 1.3 and 1.4. In an estimation problem where the measurements y are

available, the best algorithm is the one which minimizes the estimation error

related to the worst element x which is compatible with the observations, for all

possible values of y (Y -local optimality). On the contrary, if measurements are

not known, an algorithm X-locally optimal gives the best estimation related

to the worst value of y, for all unknown elements x ∈ X.

It is useful to remark that local optimality is stronger than global optimality.

Proposition 1.2 If Φ is a Y -locally optimal algorithm (X-locally optimal al-

gorithm), then it is globally optimal too.
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Proof. Let Φ be Y -locally optimal. If

ȳ = arg sup
y∈Y0

Ey(Φ, ε)

we have

E(Φ∗, ε) = Eȳ(Φ∗, ε) ≤ Eȳ(Φ, ε) ≤ E(Φ, ε) ∀Φ

where the first inequality derives from Y -local optimality, and the second one

from the definition of global error. If Φ∗ is X-locally optimal the proof is

similar. �

On the contrary, it is possible to prove that, in general, a globally optimal

algorithm is not necessarily locally optimal.

Remark 1.2 From Definition 1.3, an algorithm X-locally optimal is the al-

gorithm which solves the problem

inf
Φ
Ex(Φ, ε) (1.20)

for all x ∈ X. However, being Ex(Φ, ε) a function of x, in general also the

solution of problem (1.20) depends on x. On the other side, an estimation al-

gorithm is a function of the observations y, but not of the problem element

x which is unknown. Indeed an algorithm X-locally optimal exists only if

infΦEx(Φ, ε) does not depend on x. A particular case occurs when Ex(Φ, ε) is

independent of x, and so Ex(Φ, ε) = E(Φ, ε) and X-local optimality coincides

with global optimality.

In many applications, optimal algorithms can have a high computational bur-

den. For this reason, almost-optimal algorithms are usually employed. For

these kinds of algorithms it is possible to evaluate the worst-case performances.

Definition 1.6 An algorithm Φ∗ is globally almost-optimal (or optimal within

a factor k) if

E(Φ∗, ε) ≤ k inf
Φ
E(Φ, ε) = k R(ε).
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Analogously it is possible to define X-local and Y -local almost-optimal algo-

rithms.

1.2.2 Other properties of algorithms

In addition to the optimality concept, there are other properties that are usu-

ally requested for a pointwise estimator.

Definition 1.7 An algorithm Φ is correct if

Φ(F (x)) = S(x) ∀x ∈ X.

Correctness is the ability to reconstruct exactly the solution from observations

not corrupted by noise. It is essentially related to the concept of unbiased

estimation in the statistical theory of estimation. Note that the previous def-

inition is valid only if p ≤ m, that is if we have enough measurements with

respect to the parameters to be estimated (this is the most common situation

in estimation problems). In the linear case, we have the following property.

Proposition 1.3 Let m ≥ p and K = X. If F (x) = Fx and S(x) = Sx, an

estimation algorithm is correct if and only if

ker(F ) ⊆ ker(S). (1.21)

Proof. If (1.21) does not hold, there exists x̄ ∈ X such that Fx̄ = 0 and

Sx̄ �= 0. On the other side, a correct algorithm must satisfy Φ(0) = 0, and so

we have Φ(Fx̄) = Φ(0) = 0 �= Sx̄, which contradicts Definition 1.7.

On the contrary, we suppose that (1.21) holds, and let y = Fx, for some x ∈ X.

Let x = x1+x2, with x1 ∈ ker(F ) and x2 ∈ (ker(F ))⊥, so we have y = Fx2 and

by (1.21), Sx1 = 0. Moreover, if dim(ker(F )) = k, we have rank(F ) = n − k
and so it is possible to evaluate x2 by solving the system Fx2 = y. Fixing
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Φ(y) = Sx2 we have Φ(Fx) = Φ(y) = Sx2 = Sx1 + Sx2 = Sx and so Φ is

correct. �

Note that if F defines an injective transformation, we have ker(F ) = ∅ and so

(1.21) is always satisfied.

Another important property of an estimation algorithm is related to the ability

to provide an estimate compatible with the available information.

Definition 1.8 An estimation algorithm Φ is an interpolatory algorithm if

Φ(y) ∈ FSSy.

Interpolatory algorithms are very important, also thanks to the following prop-

erty.

Proposition 1.4 An interpolatory algorithm is Y -locally (and then also glob-

ally) optimal within a factor 2.

Proof. Let Φi be an interpolatory algorithm and let xy ∈ FPSy such that

Φi(y) = S(xy). From the definition of Y -local error (1.14) it follows that

Ey(Φi, ε) = sup
x∈FPSy

‖S(x)− Φi(y)‖Z =

= sup
x∈FPSy

‖S(x)− S(xy)‖Z ≤

≤ diam(FSSy) ≤ 2 rad(FSSy) ≤ 2Ey(Φ, ε) ∀Φ, ∀y
and then Φi is Y -locally almost-optimal. �

Other important properties concern the asymptotic behaviour of algorithms,

that is the limit value of estimation errors when the measurements number

tends to infinity.

Definition 1.9 An algorithm Φ is asymptotically convergent if

lim
ε→0

lim
m→∞

Ex(Φ, ε,m) = 0 ∀x ∈ K.
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Definition 1.10 An algorithm Φ is robustly convergent if

lim
ε→0

lim
m→∞

E(Φ, ε,m) = 0.

From the definition of global error, it follows that robust convergence implies

asymptotic one, but not conversely.

In many cases, robust convergence analysis can be related to that of the asymp-

totic behaviour of the diameter of information D(ε). In fact, if we adopt glob-

ally optimal or almost-optimal algorithms, robust convergence turns out to be

convergence of the radius of information, which from (1.19) holds if and only

if

lim
ε→0

lim
m→∞

D(ε) = 0. (1.22)

On the contrary, if (1.22) is not satisfied, there cannot exist any robustly con-

vergent algorithm. To obtain a robustly convergent algorithm it is necessary

to modify some element of the estimation problem (the experiment F (·), the
a priori information K, etc.). The analysis of the asymptotic behaviour of the

diameter is justified by the fact that in general the computation of D(ε) (or

an upper limit of it) is easier with respect to R(ε).

It is worthwhile to remark that the convergence properties previously consid-

ered are useful especially when the X space has infinite dimension. We will see

in the following (Section 2.2) that if N is finite, the convergence of the diameter

of information is easily guaranteed by a sufficient information hypothesis.

1.3 Pointwise estimators

In this section two classes of pointwise estimators are presented: the central

algorithms and the projection algorithms. These classes are important for their

properties and because they are widely used in many estimation problems.
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Since set–membership theory allows to characterize the set of all feasible solu-

tions of an estimation problem, the definition of a pointwise estimator consists

essentially in the selection of a representative element within a set. A typical

choice is to choose the Chebyshev center of the set.

Definition 1.11 A central algorithm Φc is defined as

Φc(y) = cen(FSSy).

From this definition one obtains

Ey(Φc, ε) = rad(FSSy).

The characteristics of the central algorithm obviously depend on the structure

of FSSy. In general these algorithms are computationally hard and for this

reason it is usually preferred to employ easier estimators. A very important

class is that of projection algorithms.

Definition 1.12 A projection algorithm is defined as

Φp(y) = S(xp)

where

xp = argmin
x∈K

‖y − F (x)‖Y . (1.23)

In the linear case, if K = X, a projection algorithm provides, as selected

element of the problem, the counterimage through F of the projection (in

norm ‖ · ‖Y ) of y on the subspace R(F ) (see Fig. 1.2).

It is interesting to look at the various interpretations of the projection algo-

rithm depending on the norm in the Y space. If we use the �2 norm we obtain

the popular least squares algorithm (ΦLS), widely used in many estimation and
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X
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R(F )

Figure 1.2: Graphical example of the projection algorithm when ‖ · ‖Y = �2

(orthogonal projection of y on R(F )).

identification problems. On the contrary, using �∞ and �1 norms, we obtain

respectively the minimum maximum difference estimator and the minimum

error sum estimator.

It is useful to remark that projection algorithms have important properties

also in other contexts, as for instance in the statistical theory of estimation. In

this case, the projection algorithm in a given norm results to be the maximum

likelihood estimator (MLE), under some hypotheses on the measurement noise

distribution. The various interpretations in the statistical and deterministic

contexts are reported in Table 1.2.
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‖ · ‖Y Deterministic estimation Probabilistic estimation

�2 Least squares MLE for gaussian noise

�∞ Minimum maximum difference MLE for uniform noise

�1 Minimum error sum MLE for Laplace noise

Table 1.2: Interpretations of projection algorithm depending on the Y norm.

1.4 Set estimators

In Section 1.1 we denoted as set estimator a function Φ(·) which associates a

set I of elements of the solution space to a vector y of the measurements space

Φ(y) = I ⊂ Z.

Since in set–membership theory the information regarding the estimation prob-

lem is described by means of sets (see Section 1.1.2), a natural way to proceed

is to represent the estimate through a set of admissible solutions. These esti-

mators can be essentially classified in

- exact algorithms;

- approximated algorithms.

The former can describe exactly the set of feasible solutions, i.e.

Φ(y) = FSSy.

In many cases this approach is not computationally tractable, since the FSSy is

too complex (nonlinear, non convex, etc.). For this reason great attention has

been devoted to approximated algorithms. They can be mainly divided into

inner and outer approximations. The most common approaches use ellipsoids

or orthotopes as approximating regions (see Fig. 1.3), and provide strategies
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Figure 1.3: Inner and outer approximations of the FSSy by means of ellipsoids

(a) and orthotopes (b).
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to compute in an efficient way the outer approximations of minimum volume

(MOE, MOB), or the inner approximations of maximum volume (MIE, MIB).

Under linear hypotheses, using �∞ or �1 norm in the Y space, it is known

that FSSy is a polytope (see Table 1.1). Nevertheless also the description of

a generic polytope can be computationally hard, due to the large number of

faces and vertexes. In [6, 7] it has been shown that recursive approximation

of FSSy by means of parallelotopes is a viable compromise between quality of

the approximation and required computational burden.

1.5 Set–membership system identification

In this section an application of set-membership theory is reported. Let us

consider a LTI discrete time SISO system, described by the transfer function

H(z) =
∞∑
k=0

hkz
−k.

Let h = {hi}∞i=0 be the impulse response sequence of the system, and let h

belong to a linear normed space X equipped with the norm ‖ · ‖X . Note that
in this case X is an infinite dimensional space.

Data consists of N input/output measurements {(uk, yk), k = 0, . . . , N − 1},
related by

yk =
k∑
i=0

hiuk−i + vk k = 0, 1, . . . , N − 1. (1.24)

The input sequence u is usually bounded in the �∞ norm, and so we can assume

‖u‖∞ ≤ 1. The noise sequence v is assumed to be unknown but bounded, i.e.

‖v‖Y ≤ ε.

The aim of the problem is to identify the first p elements of the impulse response

(p ≤ N).
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It is possible to rewrite the problem in vector form, by following the scheme

reported in Section 1.1. In particular:

- X is the infinite dimensional space of impulse responses x = {hk}∞k=0. A

priori knowledge on such system is expressed as h ∈ K, where K is a set

contained in X. An example of this set may be (exponential decay)

K = {h : |hi| ≤Mρi, M > 0, |ρ| < 1, i = 0, . . . , N − 1}.

- Y is the N dimensional space of measurements y = [y0, . . . , yN−1]
′,

whereas the noise vector e ∈ Y is e = v = [v0, . . . , vN−1]
′ which must

satisfy ‖e‖Y ≤ ε.

- The generic element in the solution space Z is obtained by truncating

the sequence x after the first p elements

z = [h0, . . . , hp−1]
′ = T px

and so the solution operator is the truncation operator S(·) = T p.

Now it is possible to rewrite the input/output equations (1.24) as in (1.3),

choosing the information operator

F (x) = UTNx

where U is the Toeplitz lower triangle matrix composed by the input elements

U =


u0 0 . . . 0

u1 u0 . . . 0
...

...
. . .

...

uN−1 uN−2 . . . u0

 . (1.25)

Note that in this case the information and solution operators are both linear.



2

Pointwise Estimators

In this chapter an overview of results concerning pointwise estimators is re-

ported. Particular attention is devoted to the central and projection algorithms

introduced in Section 1.3. Some basic properties of pointwise estimators are

discussed. For a thorough treatment on such topics, the reader is referred to

several papers present in the literature, such as [8, 9, 5].

The chapter is organized as follows. Section 2.1 describes linear estimation

problems, along with their solution and related performances in terms of opti-

mality, correctness, feasibility, etc., while in Section 2.2 asymptotic properties

are addressed. Finally, in Section 2.3 some extensions of previous results to

nonlinear problems are reported.

2.1 Linear problems

In this section, linear estimation problems are considered, that is problems

where F (x) = Fx, F ∈ R
m×n, and S(x) = Sx, S ∈ R

p×n. For simplicity

we assume K = X, considering that many results are also valid when K is
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a convex and balanced set. First, let us analyze properties of the central

algorithm.

2.1.1 Central algorithm

A useful result deals with the characterization of the diameter of information

[3].

Lemma 2.1 For every norm in the Y and Z spaces, one has

D(ε) = 2 sup
x∈FPS0

‖Sx‖Z .

Proof.

D(ε) = sup
y∈Y0

sup
x1,x2∈FPSy

‖S(x1 − x2)‖Z ≤

≤ sup
x1,x2:‖Fx1−Fx2‖Y ≤2ε

‖S(x1 − x2)‖Z =

= sup
x1,x2:‖Fx1−Fx2‖Y ≤ε

‖2S(x1 − x2)‖Z = 2 sup
x:‖Fx‖Y ≤ε

‖Sx‖Z

where the inequality derives from

‖Fx1 − Fx2‖Y ≤ ‖Fx1 − y‖Y + ‖Fx2 − y‖Y

which holds for every y, and therefore, in particular, for that where the sup

in D(ε) is achieved. On the other side, if y = 0, choosing x1, x2 ∈ FPS0 such

that x2 = −x1 one obtains

D(ε) ≥ sup
x1,x2∈FPS0

‖S(x1 − x2)‖Z ≥ 2 sup
x1∈FPS0

‖Sx1‖Z

and the lemma is proved. �

Lemma 2.1 states that the maximum diameter of the set of feasible solutions

(that is the worst error which is possible to achieve by choosing the estimate

inside the set) is reached when all measurements are null.

The next theorem summarizes the optimal properties of central algorithms.
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Theorem 2.1 For every couple of norms ‖ · ‖Y and ‖ · ‖Z, a central algorithm

Φc is

i) correct;

ii) Y -locally optimal (and hence globally optimal)

Ey(Φc, ε) ≤ Ey(Φ, ε) ∀y,∀Φ (2.1)

with Y -local error Ey(Φc, ε) = rad(FSSy);

iii) X-locally optimal within a factor 2 among correct estimators

Ex(Φc, ε) ≤ 2Ex(Φ̂, ε) ∀x,∀Φ̂ correct. (2.2)

Moreover, if ‖ · ‖Y and ‖ · ‖Z are such that D(ε) = 2R(ε), Φc is

iv) X-locally optimal among correct algorithms, that is

Ex(Φc, ε) ≤ Ex(Φ̂, ε) ∀x,∀Φ̂ correct. (2.3)

Proof.

i) By definition (1.7), we want to prove that cen(FSSFx) = Sx, ∀x ∈ X.

Since

FSSFx = {z = Sx : ‖F (x− x)‖Y ≤ ε}

it follows that if z1 = S(x+x) ∈ FSSFx, then also z2 = S(x−x) ∈ FSSFx
and then Sx is the symmetry center of FSSFx, for every Y norm. Hence,

for every norm ‖ · ‖Z used to compute cen(FSSFx), it coincides with Sx.

ii) By Definitions 1.1, 1.4 and 1.11.

iii) For a correct estimator Φ̂ one has

Ex(Φ̂, ε) = sup
y∈MUSFx

‖Sx− Φ̂(y)‖Z ≥

≥ sup
x:‖F (x−x)‖Y ≤ε

‖Sx− Φ̂(Fx)‖Z =

= sup
x:‖F (x−x)‖Y ≤ε

‖S(x− x)‖Z =
D(ε)

2
∀x

(2.4)
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when the last equality derives by Lemma 2.1. On the other side, from

the global optimality of Φc and from (1.17) one has

Ex(Φc, ε) ≤ E(Φc, ε) = inf
Φ
E(Φ, ε) = R(ε). (2.5)

From (1.19) it follows that R(ε) ≤ D(ε), and so (2.4)–(2.5) implies (2.2).

iv) If D(ε) = 2R(ε), from (2.4)–(2.5) one obtains (2.3). �

It is worthwhile to note that the condition D(ε) = 2R(ε) is verified in many

cases of interest. In particular it holds if:

- ‖ · ‖Z = �∞, whatever ‖ · ‖Y ;

- ‖ · ‖Y = �2, whatever ‖ · ‖Z (or, more in general, for every Y -norm such

that FPSy has a symmetry center);

- p = 1 (scalar solution), for every norm in Y and Z [10].

Theorem 2.1 shows that in a generic set-membership estimation problem, the

central algorithm is the best pointwise estimator. Note that the central algo-

rithm may not be unique.

In general a central algorithm is not linear and can be hard to compute, espe-

cially if FSSy does not have a symmetry center. In the case when ‖ · ‖Z = �∞,

FSSy is a polytope (see Table 1.1) and the following result holds [11].

Theorem 2.2 Let ‖·‖Z = �∞. Then the central algorithm Φc can be evaluated

in the following way:

Φc,i(y) = ceni(FSSy) =
zi + zi

2
i = 1, . . . , p (2.6)

where

zi = sup
z∈FSSy

zi = sup
x∈FPSy

Si,.x i = 1, . . . , p

zi = inf
z∈FSSy

zi = inf
x∈FPSy

Si,.x i = 1, . . . , p
(2.7)
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and Si,. is the i-th row of the matrix S. The Y -local error is

rad(FSSy) = max
i=1,...,p

zi − zi
2

.

From Theorem 2.2 it follows that a central algorithm Φc and its Y -local error

Ey(Φc, ε) can be obtained by solving the 2p linear programming problems in

(2.7).

2.1.2 Linear algorithms

In many applications, the computational burden required by a central algo-

rithm can be unacceptable; in this case it is necessary to use suboptimal simpler

algorithms. A possible choice is to force the estimation operator to be linear,

i.e. Φ(y) = Φy, Φ ∈ R
p×m.

The next theorem shows that, if it is used the �∞ norm in the Y and Z spaces,

it is always possible to design a correct linear algorithm, globally optimal and

X-locally optimal among correct estimators [12, 11].

Theorem 2.3 Let ‖ · ‖Z = �∞, ‖ · ‖Y = �∞ and m > n. Then there exists one

linear estimator Φl, such that

1. Φl is correct;

2. Φl is globally optimal

E(Φl, ε) ≤ E(Φ, ε) ∀Φ; (2.8)

3. Φl is X-locally optimal among correct estimators

Ex(Φl, ε) ≤ Ex(Φ, ε) ∀x,∀Φ correct; (2.9)

4. the global error and the Y -local error of Φl coincide and are equal to

E(Φl, ε) = Ex(Φl, ε) = rad(FSSFx) ∀x. (2.10)
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The algorithm Φl described in Theorem 2.3 can be computed from the active

constraints of the linear programming problems (2.7) with y = 0 (for further

details see [12, 11]).

We will see in the following that if we use the �2 norm in the Y space, there ex-

ists a linear algorithm that enjoys the global optimality and X-local optimality

properties (among correct algorithms) described in Theorem 2.3 and it is also

a central algorithm and therefore Y -locally optimal (see Theorem 2.1). This

algorithm is the celebrated least squares algorithm, and it belongs to the class

of projection algorithms representing a very special case inside that class. The

general properties of projection algorithm are discussed in the next section.

2.1.3 Projection algorithms

The first property of projection algorithms is a direct consequence of Defini-

tion 1.12.

Theorem 2.4 A projection algorithm is always an interpolatory algorithm.

Proof. Let Φp be a projection algorithm, such that Φp(y) = Sxp, with xp

defined in (1.23). If y ∈ Y0 then

‖y − F (xp)‖Y ≤ ‖y − F (x)‖Y ≤ ε ∀x ∈ FPSy

and so xp ∈ FPSy and Φp is interpolatory. �

An immediate consequence of the previous theorem is that, thanks to Propo-

sition 1.4, projection algorithms are Y -locally almost-optimal within a factor

2. This is due to the fact that in the definition of projection algorithm and

in that of FPSy it has been used the same Y norm. In the following it will

be shown that, if the projection is computed using a norm which differs from

that used to evaluate the UBB noise, Theorem 2.4 does not hold anymore, and

projection algorithms no more enjoy this suboptimality property.
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An important feature of projection algorithms is their robustness against un-

certainties about the noise level ε. The following result holds [3].

Theorem 2.5 Let Φp be the projection algorithm shown in Definition 1.12. It

follows that

Ey(Φp, ε) ≤ 2 rad(FSSy) ≤ 2Ey(Φc, ε) ∀y,∀Φ,∀ε. (2.11)

Property (2.11) is called robust almost-optimality (Y -local). It is very impor-

tant since it is usually difficult to know exactly the value of ε, while it is quite

easier to estimate an upper bound. For this reason it is useful to guarantee

the performance level of the estimation algorithm also when the noise level is

overestimated. It is worthwhile to note that central algorithms do not enjoy

this robustness property; a central algorithm computed for ε = ε0 is, in gen-

eral, no longer optimal if the real value of ε is less than ε0. Moreover, the

central estimate Φc may not belong to the actual feasible set FSSy and the

Y -local error Ey(Φc, ε) can be larger than 2 rad(FSSy).

Performances of projection algorithms may improve if the set of feasible ele-

ments FPSy has a special structure. In particular, if it has a symmetry center,

it can be proved than the projection algorithm is optimal in every sense [13].

Theorem 2.6 Let m ≥ n. For every norm ‖ · ‖Y for which FPSy has a

symmetry center, the projection algorithm Φp is

- linear and correct;

- central;

- Y -locally optimal (robustly);

- X-locally optimal (among correct estimators).
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A special class of norms for which FPSy has a central symmetry, is that of

Hilbert norms [13].

Proposition 2.1 If Y is a Hilbert space, then xy defined by

xy = argmin
x∈X

‖Fx− y‖Y

is the symmetry center of FPSy, that is ∀y ∈ Y0 one has

x ∈ FPSy =⇒ (2xy − x) ∈ FPSy.

Note that in the context defined by Proposition 2.1, the projection algorithm

is defined by Φp(y) = Sxy. In particular, choosing ‖ · ‖Y = �2, the projection

algorithm is the celebrated least squares algorithm ΦLS. In the following its

properties, which derive directly from Theorem 2.6, will be described;

Corollary 2.1 Let m ≥ n. The least squares algorithm ΦLS is correct, linear,

central, Y -locally optimal (robustly with respect to ε) and X-locally optimal

(among correct algorithms). Moreover, if rank(F ) = n, one has

ΦLS(y) = S(F
′F )−1F ′y. (2.12)

As previously stressed in Section 1.3, in real applications projection algorithms

are commonly used also in non–Hilbert spaces (�∞, �1, etc.). For this reason, it

should be useful to extend optimality properties of Theorem 2.6 to situations

where FPSy does not have a symmetry center, as it happens if �∞ or �1 norms

in the Y space are used. Unfortunately, in these cases it can only be shown

that the projection algorithm is not optimal, neither X- nor Y - nor globally.

In the following an example which shows the difference among projection al-

gorithms in �2, �∞ and �1 norms is reported. For a complete overview see

[13].
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Example 2.1 Let X = R, Y = R
2. We want to estimate the parameter x ∈ R

on the basis of measures of the function

F (x) =

 1

2

x
corrupted by additive noise e, bounded in y norm, ‖e‖Y ≤ ε. So Z = X = R,

S(x) = x, and the measures y = [y1 y2]
′ are given by

y1 = x+ e1

y2 = 2x+ e2.

Let us consider the following three cases

i) ‖ · ‖Y = �2, e21 + e
2
2 ≤ ε2

ii) ‖ · ‖Y = �∞, |ei| ≤ ε i = 1, 2

iii) ‖ · ‖Y = �1, |e1|+ |e2| ≤ ε

and compare performances of central algorithms (Φc) and projection ones (Φp).

A geometric description of the three situations is reported in Figures 2.1, 2.2,

2.3. Note that in case i) the projection algorithm (i.e. the least square algo-

rithm) is also central, as stated in Corollary 2.1, and hence Y -locally optimal.

On the contrary, in cases ii) and iii) the projection algorithm and the central

algorithm give different estimates. Since in all considered situations the feasi-

ble set FPSy is a segment of the real axis, the central estimate Φc(y) is unique

and so the projection algorithm can not be Y -locally optimal.

Regarding the global optimality, the global errors of the algorithms Φc and Φp

are reported in Table 2.1; for further details see [13]. Note that they coincide

only in the case i).

Being Φc globally optimal (see Theorem 2.1) it is possible to state that if we

use the �∞ or �1 norms on the Y space, the projection algorithm is not globally

optimal.



36 Pointwise Estimators

X

Y

MUSy

FPSy

R(F )

y

︸ ︷︷ ︸
Φp(y) = Φc(y)

Figure 2.1: Example 2.1: case ‖ · ‖Y = �2.

X

Y

MUSy

FPSy

R(F )

y

︸ ︷︷ ︸
Φc(y)

Φp(y)

Figure 2.2: Example 2.1: case ‖ · ‖Y = �∞.
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X

Y

MUSy

FPSy

R(F )

y

︸ ︷︷ ︸
Φc(y)

Φp(y)

Figure 2.3: Example 2.1: case ‖ · ‖Y = �1.

‖ · ‖Y E(Φc, ε) E(Φp, ε)

�2
1√
5
ε 1√

5
ε

�∞ 1
2
ε 2

3
ε

�1
1
3
ε 1

2
ε

Table 2.1: Global error for different Y norms.
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Since the least squares algorithm is optimal (in all senses) if the noise is energy

bounded (�2), the properties of this algorithm have been investigated in the

case of errors bounded in �∞ norm. It is easy to show that, in this case,

being the projection performed in a different norm compared with that used

to define FPSy, it is not possible to guarantee that the estimate ΦLS(y) belongs

to the feasible set FSSy. Thus, in general, the least squares algorithm is not

optimal (in any sense) in presence of errors bounded in �∞ norm. However, for

special structures of the information operator F , the algorithm ΦLS can enjoy

optimality properties. In particular, in [4] it has been shown that to identify

the parameters of a FIR filter, or the impulse response of a linear system, the

least squares algorithm is globally optimal also in the case of noise bounded

in �∞ norm, if the input sequence is an impulse or a step, and the norm used

in the X space is �∞ or �1.

2.2 Asymptotic properties of algorithms

In Section 1.2.2 the concepts of asymptotic and robust convergence of an es-

timation algorithm have been introduced. Moreover, it has been shown that

the analysis of asymptotic properties of optimal and almost-optimal estima-

tors boils down to convergence analysis of the diameter of information D(ε).

Now, let us describe some results concerning the linear setting considered in

the previous section.

Let us examine the case where the dimension n of the element space is finite

and fixed. Let us denote by Fm ∈ R
m×n the information operator matrix, by

FPSmy the feasible parameter set and by D(ε,m) the corresponding diameter

of information, to make explicit the dependance on the number m of avail-

able measurements. The following lemma is a general characterization of the

asymptotic behaviour of the diameter of information [4].
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Lemma 2.2 If there exists m0 such that rank(Fm0) = n, then

lim
ε→0

lim
m→∞

D(ε,m) = 0. (2.13)

Proof. In Section 1.1.2 it has been reported that FPSmy is bounded if and

only if rank(Fm) = n. Since this holds for every y, it follows that FPSm0
0

is bounded. Moreover, it is straightforward that, adding new measures, the

feasible set becomes smaller, i.e.

FPSm+1
0 ⊆ FPSm0 ∀m

and so FPSm0 is bounded for all m ≥ m0. From Lemma 2.1 it follows that

D(ε,m) ≤ D(ε,m0) ∀m ≥ m0

and moreover

lim
ε→0

D(ε,m) = 0 ∀m ≥ m0

from which (2.13) follows. �

An important consequence of Lemma 2.2 is the possibility to guarantee the

robust convergence of all optimal and almost-optimal algorithms.

Theorem 2.7 Let rank(Fm0) = n, for some m0. Then, any globally optimal

or almost-optimal algorithm is robustly convergent.

Proof. Let Φo and Φao be two algorithms, globally optimal and almost-optimal

respectively. From the optimality definition it follows that

E(Φo, ε) = R(ε)

E(Φao, ε) ≤ k R(ε).

Since by (1.19) R(ε) ≤ D(ε), the proof follows immediately from Lemma 2.2.

�

From the previous theorem, robust convergence of some important classes of

estimators follows.
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Corollary 2.2 If the hypothesis of Theorem 2.7 holds, then all algorithms

described in the following are robustly convergent:

- central algorithms;

- projection algorithms;

- interpolatory algorithms.

Note that the asymptotic results previously stated are valid for every norm

in the X, Y and Z spaces. Thus, it is possible to conclude that, if the space

of the problem Elements has finite dimension, the hypothesis of Lemma 2.2

guarantees the convergence of all estimation algorithms considered so far.

It is worthwhile to emphasize that projection algorithms are convergent if the

projection is done in the same Y norm appearing in the UBB hypothesis. On

the contrary, there exist examples where the least squares algorithm diverges

when ‖ · ‖Y = �∞ (see [4]).

2.3 Properties in the nonlinear case

Many results reported in the previous paragraphs are related to the linearity of

the information and solution operators. Nevertheless, it is possible to extend

some properties of central and projection algorithms to the general case.

Theorem 2.8 A central algorithm Φc is Y -locally optimal. The minimum

Y -local error turns out to be

Ey(Φc, ε) = rad(FSSy).

Note that Theorem 2.8 holds for every X,Y, Z norm.
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Let us analyze how to compute a central algorithm when ‖ · ‖Y = �∞ in the

nonlinear case [11].

Theorem 2.9 Let ‖·‖Z = �∞. Then the central algorithm Φc can be computed

in the following way:

Φc(y) = cen(FSSy) =
zi + zi

2
i = 1, . . . , p (2.14)

where

zi = sup
x∈FPSy

Si(x) i = 1, . . . , p

zi = inf
x∈FPSy

Si(x) i = 1, . . . , p
(2.15)

and Si is the i-th component of the operator S. The Y -local error is given by

rad(FSSy) = max
i=1,...,p

zi − zi
2

.

Thus the computation of the central algorithm is equivalent to the resolution of

the 2 p optimization problems (2.15). In the nonlinear case, these problems are

in general non convex. Global optimization tools provide only approximated

solutions for problems (2.15), and are not able to evaluate the approximation

error. However, if F (·) and S(·) are polynomial functions, there exist special
optimization algorithms that can provide better results [14].

Theorem 2.10 If F (x) and S(x) are polynomial functions, there exist algo-

rithms which converge (with probability 1) to the global extremes of problems

(2.15).

Under the hypotheses of Theorem 2.10, (2.15) are problems of polynomial

optimization. In general these kinds of problems are non convex and can

present local solutions [15]. But if problem variables are strictly positive, we

have the so-called signomial optimization problems, for whom convergent (in

probability) algorithms are provided [16, 17, 14]. If the sign of some problem

variables (i.e. some components of x) is unknown, it is possible to reconduct
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a polynomial problem to a signomial one by replacing these variables with the

difference of two auxiliary variables strictly positive.

Concerning projection algorithms, they also have in the general case two im-

portant features: the feasibility of the provided estimation (they are interpo-

latory algorithms) and the Y -local and global robust almost-optimality. This

means that results stated in Theorem 2.4 and 2.10 hold, as well as the other

considerations about robustness of projection algorithms. This last property,

along with the relative easiness to compute such algorithms, is the reason why

projection algorithms are often preferred to the optimal ones.



3

Conditional estimation

In estimation problems, a typical goal is to find an estimate within a subset

of the solution space. This can happen for several reasons; a typical example

concerns system identification, where it is convenient to find a solution within

a set of models of reduced order. This is particularly useful when the estimated

model is used to design a controller.

In other cases, the restriction on the solution set is related to the problem

nature, as for instance in set-membership filtering, where the estimate of the

state sequence at one time instant is constrained by the previously computed

estimates.

In this chapter the so-called reduced-complexity estimation (or conditional es-

timation) is introduced in the context of the theory of optimal algorithms

(Section 3.1). In Section 3.2 some conditional pointwise estimators along with

a description of their general properties are reported. A specific treatment con-

cerning the case of energy bounded noise is reported in Section 3.3. Finally, a

detailed characterization about properties of the main conditional algorithms

is provided in Section 3.4.
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3.1 Problem formulation

Let us consider the generic problem described in Section 1.1, under the linear

hypotheses introduced in Section 2.1. Thus, the relation between the unknown

element x ∈ R
n and the noisy measurements y ∈ R

m is

y = Fx+ e

under the UBB noise hypothesis

‖e‖Y ≤ ε.

In the following, to simplify the treatment, we suppose that the quantity we

want to estimate is x, and so S = I (the parameter set and the solution set

coincide). From this assumption, it follows that the set of the feasible estimates

compatible with the available information is FPSy whose definition has been

given in (1.7). Moreover, let us assume that there are no a priori hypotheses

on the unknown element, and so K = X.

In previous chapters, the aim of the estimation problem was to find an algo-

rithm Φ(·) such that z = Φ(y) ∈ X is a good approximation of the unknown

element x. On the contrary, now we want to compute an estimate which

belongs to a previously defined set. This constraint can be summarized as

follows

z ∈M

where M is a subset of X (M⊂ X). The aim is to find a reduced-complexity

estimator (or conditional estimator) Φ : Y → M such that z = Φ(y) ∈ M
is a good estimate of the unknown element x. We will denote the class of

conditional estimators as AM, to emphasize the dependence on the set M.

The quality of an estimation algorithm Φ ∈ AM is still evaluated by the Y -local

error

Ey(Φ, ε) = sup
x∈FPSy

‖x− Φ(y)‖X
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that is the maximum distance of the estimate Φ(y) ∈ M from an element

of the feasible set. Of course, the minimum error (local or global) that can

be obtained changes for reduced-complexity algorithms. We can define the

conditional radius of information as

RM(ε) = inf
Φ∈AM

E(Φ, ε).

From (1.17) it follows immediately that

RM(ε) ≥ R(ε) ∀M.

It is straightforward that the conditional radius of information depends on the

choice of the set M. In the following we will consider affinely parameterized

sets M, such as

M = {z ∈ R
n : z = zo +Mα, α ∈ R

h} (3.1)

with h < n. In other words, the admissible sets M are h–dimensional linear

manifolds, contained in the space R
n.

3.2 Conditional pointwise estimators

In this section, three useful algorithms commonly used for reduced-complexity

estimation are introduced. They are defined as follows.

Definition 3.1 The conditional central algorithm is the operator

Φcc(y) = zcc

where

zcc = arg inf
z∈M

sup
x∈FPSy

‖z − x‖X � cenM(FPSy). (3.2)

Definition 3.2 An interpolatory projection algorithm is an operator

Φip(y) = zip
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where

zip = arg inf
z∈M

‖z − xi‖X (3.3)

and xi ∈ FPSy.

Definition 3.3 The central projection algorithm is the operator

Φcp(y) = zcp

where

zcp = arg inf
z∈M

‖z − zy‖X (3.4)

and

zy = cen(FPSy) = arg inf
z∈Rn

sup
z̃∈FPSy

‖z − z̃‖X . (3.5)

Definition 3.4 The restricted projection algorithm is the operator

Φrp(y) = zrp

where

zrp = arg inf
z∈M

‖Fz − y‖Y . (3.6)

Remark 3.1 The previously defined algorithms are often cited in the literature

in various ways. For example in [18], when ‖ · ‖Y is a Hilbert norm, Φcp is

called conditional least squares algorithm, whereas Φrp is called reduced least

squares algorithm.

It is useful to provide a geometric interpretation of conditional estimators. The

algorithm Φcc computes the Chebyshev center of FPSy “conditioned” to the

set M, that is the element in M where it is centered the minimum radius

sphere (in X norm) which contains FPSy. Conversely, the estimate provided

by Φcp is the projection (in X norm) of the Chebyshev center of FPSy on

the manifold M, that is the element of M which has the minimum distance
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from cen(FPSy). Finally, the algorithm Φrp computes the projection (in Y

norm) of the measurement vector y on the set F (M). Note that if K = M,

the restricted projection algorithm coincides with the non restricted one (see

Definition 1.12).

In reduced-complexity estimation, the conditional central algorithm plays the

same role as the central algorithm in non conditional estimation problems.

Theorem 3.1 The conditional central algorithm Φcc is Y -locally optimal (and

so globally optimal) among the reduced orders estimators

Ey(Φcc, ε) ≤ Ey(Φ, ε) ∀y,∀Φ ∈ AM.

Thus the conditional central algorithm minimizes the estimation error among

all algorithms whose estimates are constrained to belong to M.

The central projection algorithm is not optimal; however it is possible to pro-

vide bounds on its worst-case estimation error.

Theorem 3.2 The central projection algorithm is optimal within a factor 3,

that is

Ey(Φcp, ε) ≤ 3Ey(Φ, ε) ∀y,∀Φ ∈ AM.

Proof. From (3.4) one has, for all z ∈ FPSy

‖zcp − z‖X ≤ ‖zcp − zy‖X + ‖zy − z‖X ≤
≤ ‖zcc − zy‖X + ‖zy − z‖X .

Maximizing with respect to z ∈ FPSy, one obtains

Ey(Φcp, ε) ≤ ‖zcc − zy‖X + sup
z∈FPSy

‖zy − z‖X . (3.7)

On the other hand, using again the triangle inequality, one has

‖zcc − zy‖X ≤ ‖zcc − z‖X + ‖z − zy‖X ∀y
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and thus

Ey(Φcp, ε) ≤ sup
z∈FPSy

‖zcc − z‖X + 2 sup
z∈FPSy

‖zy − z‖X .

From (3.5), it follows that

Ey(Φcp, ε) ≤ 3Ey(Φcc, ε)

and, thanks to Theorem 3.1, the proof is completed. �

This optimality factor can be improved depending on the structure of the

FPSy. In particular, we have the following result.

Corollary 3.1 If zy ∈ FPSy, the central projection algorithm is optimal

within a factor 2.

Proof. Since zy ∈ FPSy, one has

‖zcc − zy‖X ≤ sup
z∈FPSy

‖zcc − z‖X .

The proof follows by (3.7) in the proof of Theorem 3.2. �

Note that the preceding results are general. They do not depend either on

the set M, or on the norm choice ‖ · ‖X , ‖ · ‖Y . In some specific cases it

is possible to provide more detailed information about conditional algorithm

performances. A typical example is reported in the following [18].

Theorem 3.3 Let ‖ · ‖X = �∞ and ‖ · ‖Y = �2. Let M be the linear manifold

defined in (3.1), such that M = [Ih 0]
′ (that is M is a hyperplane parallel to h

cartesian axes). Then Φcp is Y -locally optimal among the reduced-complexity

algorithms

Ey(Φcp, ε) ≤ Ey(Φ, ε) ∀y,∀Φ ∈ AM.

Proof. See [18]. �

Let us now analyze interpolatory projection algorithms.
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Theorem 3.4 Any interpolatory projection algorithm is optimal within a fac-

tor 3, that is

Ey(Φip, ε) ≤ 3Ey(Φ, ε) ∀y,∀Φ ∈ AM.

Proof. Let z ∈ FPSy and zm ∈M. From (3.3), one has

‖zip − z‖X ≤ ‖zip − xi‖X + ‖xi − z‖X ≤
≤ ‖zm − xi‖X +D(ε) ≤ sup

x∈FPSy

‖zm − x‖+ 2R(ε).

The result is obtained by maximizing over z ∈ FPSy and minimizing over

zm ∈M. �

In the following, it will be reported a more general case with respect to that

considered in Theorem 3.3, where it will be possible to characterize in details

the algorithms Φcc, Φcp, Φrp and their estimation errors.

3.3 Conditional estimation with energy

bounded noise

Let us consider the reduced estimation problem described in Section 3.1 along

with the set M defined as a linear manifold (3.1). Moreover let us assume

that noise is bounded in �2 norm, that is

‖e‖2 ≤ ε.

First of all it is useful to highlight some geometric features of the problem.

• The feasible set is the ellipsoid

FPSy = {x ∈ R
n : x′F ′Fx− 2y′Fx+ y′y ≤ ε2}.

• zcc in (3.2) is the Chebyshev center of the ellipsoid FPSy, constrained

to the h-dimensional hyperplane M.
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• zy in (3.5) is the center of the ellipsoid FPSy

zy = (F ′F )−1F ′y.

• zcp in (3.4) is the projection of zy on M, in norm ‖ · ‖X . If we assume

that ‖ · ‖X = �2, one has

zcp = z
o −M(M ′M)−1M ′(F ′F )−1F ′(y − Fzo).

• zrp in (3.6) is the counterimage, through F , of the orthogonal projection

of y on the linear manifold F (M) in R
m, that is

zrp = z
o +M(M ′F ′FM)−1M ′F ′(y − Fzo).

By means of a suitable change of coordinates in the X space, the problem can

be stated, without loss of generality, in the following way. Let the feasible set

FPSy be the ellipsoid

ε = {x ∈ R
n : x′Qx ≤ 1} (3.8)

Q = diag{qi}ni=1, 0 < q1 ≤ q2 ≤ . . . ≤ qn (3.9)

and let the linear manifold M

M = {z ∈ R
n : z = zo +Mα, α ∈ R

h} (3.10)

M ′M = Ih (3.11)

M ′zo = 0. (3.12)

with h < n. Thus we have zy = 0 and, if ‖ · ‖X = �2, the estimates provided

by the three previously considered algorithms become respectively

zcc = arg min
z∈M

max
x∈ε

‖x− z‖2 (3.13)

zcp = zo (3.14)

zrp = [In −M(M ′QM)−1M ′Q] zo. (3.15)
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Note that in general the computation of the conditional center is a very com-

plex problem. However, under the previous hypotheses (energy bounded dis-

turbances and errors measured in �2 norm), an efficient algorithm has been

provided to solve such a problem [19].

3.3.1 H2 set-membership identification

In this section, an example of conditional set-membership identification prob-

lem is provided.

Let us consider the problem described in Section 1.5. We assume that the

noise sequence is energy bounded in �2 norm, and that there are no a priori

information, that is K = X.

The aim is to estimate the truncated impulse response x on the base of N

input/output measures.

The feasible set is now given by

FPSNy = {x : ‖UTNx− y‖2 ≤ ε} (3.16)

where U is the Toeplitz matrix in (1.25).

Of course, since y ∈ R
N it is possible to estimate only the first N samples of

the impulse response, xN = TNx.

For many reasons, it can be useful to estimate xN inside a linearly parameter-

ized model class. This means that we want to find an algorithm Φ : Y → M
providing a reduced order model z ∈ M, where M is a linear manifold in

the infinite dimensional space of impulse responses. In system identification

theory, the basis M is usually a set of impulse responses of linear filters, such

as Laguerre filters, Kautz filters and other orthonormal functions [20, 21]. A

deeper treatment about such topics is reported in Chapter 4.
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When the estimation error is measured in �2 norm (as in H2 identification
1), it

can be shown that the basis elements can be impulse responses of FIR filters

of length N , obtained by truncating the impulse responses of the basis after

N time steps ([22], see also Section 4.4). This means that the choice of the

estimate of xN can be restricted to the set

M = {xN ∈ R
N : xN = xN +Mα, α ∈ R

h}

where xN and the columns of M ∈ R
N×h are the basis of the class M of

order h < N . It follows that the algorithms described in Definitions 3.1–3.4

provide possible solutions of the H2 set-membership identification problem. In

particular, by Theorem 3.1, it follows that the conditional central estimation

Φcc(y) provides the optimal impulse response (i.e. the minimum Y -local error)

among the reduced order models M.

3.4 Properties of conditional algorithms

In Section 3.2 the central projection algorithm and the restricted projection al-

gorithm have been introduced (Definitions 3.3 and 3.4) for the generic problem

of restricted complexity estimation. As described in Section 3.3, if the noise

is energy bounded it follows that the estimates provided by these algorithms

can be easily computed by means of (3.14) and (3.15). Since these algorithms

provide a computationally efficient alternative to the optimal algorithm Φcc,

it is useful to investigate their properties, and in particular, their degree of

optimality.

Regarding the central projection algorithm, the following result is an immedi-

ate consequence of the problem geometry [22].

Proposition 3.1 If ‖·‖Y = �2, the central projection algorithm Φcp is optimal

within a factor 2.

1H2 is the set of real functions that are square integrable on the unit circle.
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Proof. Being FPSy an ellipsoid, zy in (3.5) is its symmetry center. Thus

zy ∈ FPSy and the result follows immediately by Corollary 3.1. �

This bound can be improved under the hypothesis that also the X norm is �2

as stated in the following theorem.

Theorem 3.5 Let M be a full-rank linear manifold as in (3.1) and let ‖·‖X =

‖ · ‖Y = �2. Then the central projection algorithm Φcp satisfies

Ey(Φcp, ε) ≤
√

4

3
Ey(Φ, ε) ∀y,∀Φ ∈ AM.

Proof. See [23]. �

Indeed, the previous theorem states that under hypotheses of energy bounded

noise and estimation errors measured in energy norm, the central projection

algorithm is optimal within a factor
√
4/3. Moreover, it has been shown that

there exist estimation problems for which the upper bound is achieved.

Let us examine a generic interpolatory projection algorithm.

Theorem 3.6 Under the hypotheses of Theorem 3.5, an interpolatory projec-

tion algorithm Φip is optimal within a factor 2, that is

Ey(Φip, ε) ≤ 2Ey(Φ, ε) ∀y,∀Φ ∈ AM.

Proof. See [23]. �

Let us consider the restricted projection algorithm. If the set M is a linear

manifold, the estimate zrp assumes the following geometric meaning.

Proposition 3.2 Let ε and M be defined respectively as in (3.8) and (3.10).

If ε
⋂M �= ∅, then zrp in (3.15) is the symmetry center of ε

⋂M.

Proof. It results that

ε
⋂

M = {z ∈ R
n : z = zo +Mα, α′M ′QMα+ 2zo′QMα+ zo′Qzo ≤ 1}
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and thus, if ε
⋂M is not empty, its symmetry center is zo +Mαc, with

αc = −(M ′QM)−1M ′Qzo

which coincides with zrp in (3.15). �

The previous result allows to characterize the degree of optimality of the re-

stricted projection algorithm Φrp, for the cases where there exist reduced-

complexity estimates which belong to the feasible set FPSy.

Proposition 3.3 If ‖·‖Y = �2 and M⋂FPSy �= ∅, with M as in (3.1), then

the restricted projection algorithm Φrp is optimal within a factor 2.

Proof. By Proposition 3.2 the estimate zrp = Φrp(y) is the symmetry center of

M⋂FPSy and so zrp ∈ FPSy. Therefore Φrp turns out to be an interpolatory

algorithm, and so optimal within a factor 2 by Proposition 1.4. �

In other words, the previous proposition states that, if the estimation class

is compatible with the available information (i.e. there exists at least one

element of M which is feasible), then also the restricted projection algorithm

is almost-optimal. However, in general, it is not possible to guarantee an upper

bound to the Y -local estimation error of the algorithm Φrp. This is shown in

the following proposition.

Proposition 3.4 For any c > 0, there exists a reduced-complexity estimation

problem such that Ey(Φrp, ε) > c · Ey(Φcc, ε).

Proof. See [23]. �

Indeed, the error of the restricted projection algorithm can be arbitrarily large.

By previous results, it may appear that the central projection algorithm pro-

vides always a better estimate (as Y -local error) than the restricted projection

algorithm. In the following example [23] it is shown that this is not always

true.
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Example 3.1 Let us consider the ellipsoid ε, defined as in (3.8) with

Q =


0.05 0 0

0 0.25 0

0 0 2.5


and the linear manifold M in (3.10), where

zo =


−0.47
−0.1
0.94

 M =
v

‖v‖2

, with v =


−0.17
1.269

0.05

 .
Computing the conditional central estimate zcc (by means of the procedure re-

ported in [19]), and the projection estimates zcp and zrp as in (3.14) and (3.15),

one obtains the following estimation errors

dε(zcc) = 25.0691

dε(zcp) = 25.3368

dε(zrp) = 25.1121

and it is possible to conclude that, in this case, the central projection algorithm

provides a larger error with respect to that provided by the restricted projection

algorithm.

However, there exist special situations in which it is possible to a priori order

the Y -local errors of the algorithms Φcc,Φcp,Φrp. One of these is described in

the following proposition.

Proposition 3.5 Let ‖ · ‖Y = �2 and let M be a linear manifold defined as in

(3.1), with h = n− 1. Then

i) the estimates Φcc,Φcp,Φrp are lined up on the manifold M;

ii) Ey(Φcc, ε) ≤ Ey(Φcp, ε) ≤ Ey(Φrp, ε) ∀y.
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Proof. See [24]. �

Indeed, if the linear manifold M has dimension n − 1, the error provided

by the central projection algorithm is always less than that provided by the

restricted projection one. It has been verified, by means of randomly generated

experimental data, that there is a significant difference between performances

of the two algorithms. In fact, examples in which the estimate zrp is better

than zcp seem to occur quite rarely.
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Orthonormal basis functions in

conditional set-membership

identification

In Section 3.3.1 it has been shown how a linearly parameterized manifold can

be selected as a reduced-order model class, in order to perform restricted-

complexity identification of a given transfer function (or impulse response se-

quence). In this chapter, the class of orthonormal basis functions previously

introduced in Section 3.3.1 will be analyzed in details, with special emphasis

on Laguerre filters.

The chapter is organized as follows. In Section 4.1 a general introduction

to orthonormal basis functions is given. A description of the main classes

of orthonormal basis functions is addressed in Section 4.2; in particular La-

guerre, Kautz and generalized orthonormal basis functions are presented. In

Section 4.3, the use of orthonormal basis functions in set-membership system

identification is discussed. Particular emphasis on error bounds for different

pole choices is addressed in Section 4.4, while simulation examples are reported

in Section 4.5.
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4.1 Orthonormal basis functions

Decomposing dynamical systems in terms of orthonormal expansions enables

approximation of a system by a finite parameterization.

The importance of orthogonal basis functions goes beyond the areas of sys-

tem identification and adaptive signal processing. Many problems in circuit

theory, signal processing, telecommunications, system and control theory, es-

timation and optimization theory benefit from an efficient representation or

parameterization of particular classes of signals/systems. A decomposition of

a signal/system in term of independent orthogonal components play an impor-

tant role in devising estimation/optimization algorithms where the choice for

particular orthogonal structures can be made dependent on prior knowledge

on the signal/system at hand.

Let us consider a stable system G(z) ∈ H described by

G(z) =
∞∑
k=0

gkz
−k (4.1)

with {gk}k=0,1,2,... the impulse response sequence and H is a suitable space.

Let {fk(z)}k=0,1,2,... be an orthonormal basis for the set of systems H.

The orthonormality of the basis is defined as

1

2π

∫ π

−π
fk(e

jω) fl(e
−jω) dω =

 1 (k = l)

0 (k �= l)
. (4.2)

Note that fk(z) = z−k is one of the possible choices for such a basis; in this

case the choice corresponds to the use of the so-called finite impulse response

(FIR) models.

The following theorem holds.

Theorem 4.1 Let G(z) and fk(z) be defined as in (4.1), (4.2). Then there
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exists a unique expansion

G(z) =
∞∑
k=0

Lkfk(z) (4.3)

with {Lk}k=0,1,2,... the real-valued expansion coefficients.

Usually a model of the system G(z) is represented by a finite length expansion

Ĝ(z) =
n−1∑
k=0

L̂k fk(z). (4.4)

In this case it is clear that the accuracy of the model, in terms of the minimal

possible deviation between system and model (in any norm), will be essentially

dependent on the choice of basis functions fk(z).

For this reason the development of appropriate basis functions is a topic that

has attracted considerable interest. The issue here is that it is profitable to

design basis functions that reflect the dominant dynamics of the process to be

modelled.

Besides FIR, typical basis functions are Laguerre functions, Kautz functions

[21] and generalized orthonormal basis functions [25, 20]. Laguerre functions

involve a scalar design variable a that has to be chosen in a range that matches

the dominant (first order) dynamics of the process to be modelled. Kautz func-

tions are used for moderately damped systems, and consist in a second order

generalization of the Laguerre functions. Recently a generalized set of or-

thonormal basis functions has been investigated; they are generated by inner

all-pass transfer functions of any prechosen order. This type of basis functions

generalizes the Laguerre and Kautz bases, which appear as special cases when

choosing first and second order inner functions. Using generalized basis func-

tions that contain system dynamics may be advantageous in identification and

approximation problems. If the dynamics of the basis generating system and

the dynamics of the system to be modelled are close, the convergence rate of a



60 Orthonormal basis functions in conditional identification

series expansion of the system becomes very fast. Moreover the identification

of expansion coefficients in a series expansion benefits very much from a fast

convergence rate and the number of coefficients to be determined to accurately

model the system becomes smaller. This leads to a reduction of both bias and

variance in the estimated models.

4.2 Classes of orthonormal basis functions

4.2.1 Laguerre functions

It is possible to define Laguerre functions in continuous time or in discrete

time. Let us analyze first the continuous time case.

Lemma 4.1 Assume the function G(s) to be strictly proper (G(∞) = 0),

analytic in Re(s) > 0 and continuous in Re(s) ≥ 0. Let a > 0, then there

exists a sequence {gk} such that

G(s) =
∞∑
k=1

gk

√
2a

s+ a

(
s− a
s+ a

)k−1

, Re(s) ≥ 0. (4.5)

Proof. See [26]. �

The functions

Li(s, a) =

√
2a

s+ a

(
s− a
s+ a

)k−1

(4.6)

consisting of a first order low-pass term and a (k−1)th-order all pass factor, are
the Laplace transforms of the classical Laguerre functions. These functions are

orthogonal in L2(0,∞), and form a complete set in L2(0,∞) and in L1(0,∞).

The parameter a is the so-called Laguerre pole and plays a fundamental role

in determining the convergence rate of the approximation.

Since in system identification it is customary to have a fixed number of mea-

surements taken at exact time intervals, the discrete Laguerre expansion is
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usually adopted.

Lemma 4.2 Assume the function G(z) to be strictly proper (G(∞) = 0),

analytic in |z| > 1 and continuous in |z| ≥ 1. Let −1 < a < 1, then there

exists a sequence {gk} such that

G(z) =
∞∑
k=1

gk

√
1− a2

z − a
(
1− az
z − a

)k−1

, |z| ≥ 1. (4.7)

The functions

Lk(z, a) =

√
1− a2

z − a
(
1− az
z − a

)k−1

, k = 1, 2, . . . (4.8)

are the z-transform of the classical Laguerre sequences.

An alternative way to define Laguerre filters (in z−1) is

Lk(z, a) =

√
1− a2

1− az−1

(
z−1 − a
1− az−1

)k
, k = 0, 1, 2, . . . (4.9)

In the following, only discrete Laguerre functions will be considered.

4.2.2 Optimal pole selection in Laguerre expansion

It is well known that the rate of approximation of a function by Laguerre

filters heavily depends on the pole choice. A typical example consists in the

approximation of a function h(t) by a truncated Laguerre series with a fixed

number of terms. One has

hn(t) =
n∑
i=0

ci(a)li(t, a) (4.10)

where li(t, a) is the time response of Li(z, a) and ci(a) are the optimal coeffi-

cients of the linear combination, i.e.

ci(a) = arg min

i=0,1,...,n
ci∈R

‖h(t)− hn(t)‖2 (4.11)
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with hn(t) given by (4.10).

Let us assume that we want to evaluate the minimum deliverable estimation

error in �2 norm, that is

En(a) = ‖h(t)− hn(t)‖2 (4.12)

where the parameter a is indicated to emphasize the dependence of the ap-

proximation error on the pole.

It is possible to rewrite the error in the following way

En(a) =< h(t), h(t) > −
n∑
i=0

c2i (a). (4.13)

Now, the aim is to find the optimal position of the pole a, that is the value

of a such that En(a) is minimized. It has been shown that at each stationary

point of En(a) the following condition holds [27, 28, 29].

cn(a) cn+1(a) = 0. (4.14)

Clearly, the determination of all stationary points of the squared error En(a)

requires the solution of the equations ci(·) = 0, for i = n and i = n + 1. This

is in general a very difficult task. Many procedures have been proposed in the

past years to solve this problem, such as for instance in [30, 27, 28, 31, 32, 29,

33]. Another approach to this problem, leading to the optimal position of the

pole for a class of systems satisfying certain measurements, has been given in

[34, 35].

In the following example it is shown that the approximation of a function

depends strongly on the choice of the Laguerre pole.

Example 4.1 Let H(z) =
z3 − 1.2z2 + 0.7z − 1.5

z4 + 1.2z3 + 0.65z2 + 0.21z − 0.01
and let h be its

impulse response (N=20).
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Let Mp be the model class of Laguerre filters (of order n = 4) with pole p and

h̃(p) = arg inf
h̃∈Mp

‖h− h̃‖2 be the best approximation for the pole p.

In Fig. 4.1 the true and the approximated impulse response coefficients are

plotted, while in Table 4.1 the numerical values of estimation errors are pro-

vided.

It is clear by this example that the approximation strongly depends on the pole

choice of Laguerre functions.

4.2.3 Kautz functions

Although the use of Laguerre filters in system estimation/identification is quite

common, a known drawback of this kind of functions is that, in general, poorly

damped systems are difficult to approximate with a reasonable number of

terms. For this reason other kinds of orthonormal basis functions have been

introduced.

In this section, the so-called (two parameters) discrete Kautz functions are

briefly described. Through these functions it is possible to approximate more

efficiently signals with strong oscillatory behaviour [36, 21].

Like for Laguerre filters, for a large number of expansion terms, the choice

of the free parameters is not crucial, but for a limited number of expansion

terms the choice of the parameters is of great importance to provide a good

approximation of a given function.

The discrete Kautz functions can be written in various forms. One possible

way to define them is through their z-transform Kl(b, c), i.e.

G(z) =
∞∑
j=0

LjKj(z)
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Figure 4.1: Nominal model (black) and Laguerre approximations of 20 impulse

response coefficients for different pole choice.

Laguerre pole ‖h− h̃(p)‖2 Color (Fig. 4.1)

-0.9 2.8116 red

-0.4 0.7598 blue

-0.1 4.3441 magenta

0.4 6.5548 green

Table 4.1: Comparison among approximation errors for different pole choice

of the Laguerre filters.
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with

K2n(z) =
z
√
(1− c2)(1− b2)

z2 + b(c− 1)z − c
(−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z − c
)n

K2n+1(z) =
z(z − b)√1− c2
z2 + b(c− 1)z − c

(−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z − c
)n

where

−1 < b < 1 , −1 < c < 1 , n = 0, 1, 2, . . .

Compared to Laguerre filters, there are now two free parameters b and c, which

make it possible to assign a pair of complex conjugate poles to the transfer

functions Kj(z).

4.2.4 Generalized orthonormal basis functions

Generalized Orthonormal Basis Functions (GOBF) are extensions of the pre-

viously described functions. These functions were introduced in [25, 37, 38],

and the main result concerning them is reported in the following theorem.

Theorem 4.2 Let Gb(z) be a scalar inner function1 with McMillan degree

nb > 0, having a minimal balanced realization (A,B,C,D). Denote

Vk(z) = z(zI − A)−1BGk
b (z). (4.15)

Then the sequence of scalar rational functions {eTi Vk(z)}i=1,...,nb;k=0,...,∞, where

ei is the i-th euclidean basis vector in R
nb, forms an orthonormal basis for the

Hilbert space H2.

Note that these basis functions exhibit the property that they can approximate

system dynamics in a very general way. One can construct an inner functionGb

from any set of poles, and thus the resulting basis can incorporate dynamics

of any complexity, combining, for example, both fast and slow dynamics in

1A function G(z) is called inner if it is stable and it satisfies G(z−1)G(z) = 1.
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damped and resonant modes. A direct result is that for any specifically chosen

Vk(z), any strictly proper transfer function G(z) ∈ H2 has a unique series

expansion

G(z) = z−1

∞∑
k=0

LkVk(z) (4.16)

with Lk ∈ �1×nb
2 [0,∞).

In the following it is shown how specific choices of Gb(z) can generate well

known classical basis functions.

- With Gb(z) = z−1, having minimal balanced realization (0, 1, 1, 0), the

standard FIR basis Vk(z) = z
−k results.

- Choosing a first order inner function

Gb(z) =
(1− az)
(z − a)

with some real valued a, |a| < 1, and balanced realization

(A,B,C,D) = (a,
√
1− a2,

√
1− a2,−a),

the Laguerre basis is obtained.

- Similarly, the Kautz functions originate from the choice of a second order

inner function

Gb(z) =
−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z − c
with some real valued b and c satisfying |c|, |b| < 1. A balanced realiza-

tion of Gb(z) can be found to be given by (see [38])

A =

 b
√
1− b2

c
√
1− b2 −bc

 , B =

 0
√
1− c2


c =
[√

(1− c2)(1− b2) − b
√
1− c2

]
, D = −c .
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The generalized orthonormal basis for H2 also induces a similar basis for

the signal space �2[0,∞) of squared summable sequences, through inverse z-

transformation to the signal domain. Denoting

Vk(z) =
∞∑
l=0

φk(l)z
−l

it follows that {eTi φk(l)}i=1,...,nb;k=0,...∞ is an orthonormal basis for the signal

space �2[0,∞). These �2 basis functions can be also constructed directly from

Gb and its balanced realization (A,B,C,D) (see [38]).

4.3 Orthonormal basis functions in conditional

set-membership identification

In Chapter 3 the concept of conditional identification has been introduced. It

has been shown that in this context it is common to restrict the set of the

estimated model inside a linearly parameterized set M.

A typical choice of the setM is given by the impulse responses of orthonormal

basis functions. Let us consider the framework described in Section 3.3.1

regardingH2 conditional identification and let the impulse response of a system

be denoted by h ∈ H. A priori knowledge on the system is expressed as h ∈ S,
where S is a set contained in H. It is possible to write the set M emphasizing

the dependence on the pole vector p ∈ R
m

M = {h : h =Mpθ, θ ∈ R
n} (4.17)

whereMp is a linear operator and θ is the n-dimensional parameter vector to be

identified, n < N . For example, for Laguerre filters, p is the real Laguerre pole

(m = 1), while for Kautz functions p denotes the pair of complex conjugate

poles (m = 2).

It is known that, once the pole vector p is fixed, the optimal solution of this
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problem is given by the conditional central algorithm, i.e.

Φcc(y) =Mpθcc

where

θcc = arg inf
θ∈Rn

sup
h∈F

‖h−Mpθ‖ (4.18)

and F is the feasible set given by (see (3.16))

F = FSSy = {h ∈ S : ‖UTNh− y‖2 ≤ ε}. (4.19)

It is straightforward to define the optimal pole (for a given function h ∈ H
and a model class M) as

p∗(h) = arg inf
p∈P

inf
θ∈Rn

‖h−Mpθ‖ (4.20)

where P is the set of admissible pole locations, which usually rely on a priori

knowledge on the true system.

In the context of conditional set membership identification, the selection of the

optimal pole is performed with respect to all the elements in the feasible set,

i.e. via the minimization of the worst-case error. This leads to the following

optimization problem

p∗(F) = arg inf
p∈P

inf
θ∈Rn

sup
h∈F

‖h−Mpθ‖. (4.21)

This is, in general, a very complicated min-max optimization problem for which

the derivation of simple conditions appears to be an awkward task. For this

reason suboptimal algorithms described in Section 3.2 are commonly used. In

particular, let us analyze the central projection algorithm and an interpolatory

projection algorithm.

- Central projection algorithm.

Let F be the FSSy and let hc be the Chebyshev center of F in a given

norm, as stated in Definition 1.1, i.e.

hc = arg inf
h∈H

sup
h̃∈F

‖h− h̃‖.
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Then,

hcp = Φcp(y, p
∗(hc)) =Mp∗(hc)θ

∗(hc) (4.22)

where

θ∗(hc) = arg inf
θ∈Rn

‖h−Mp∗(hc)θ‖. (4.23)

The resulting estimation error is

E[Φcp(y; p
∗(hc))] = sup

h∈F
‖h− Φcp(y, p

∗(hc))‖. (4.24)

- Interpolatory projection algorithm.

Let hi ∈ F be an element of the feasible set. Then,

hip = Φip(y, p
∗(hi)) =Mp∗(hi)θ

∗(hi) (4.25)

where

θ∗(hi) = arg inf
θ∈Rn

‖h−Mp∗(hi)θ‖. (4.26)

The resulting estimation error is

E[Φip(y; p
∗(hi))] = sup

h∈F
‖h− Φip(y, p

∗(hi))‖. (4.27)

Since the model class M must be selected via optimization with respect to

poles p, as in the computation of (4.22) and (4.25), one can first compute hc

or hi, then exploit condition (4.20) to obtain p∗(hc) or p∗(hi), and hence the

estimates hcp and hip.

Note that for these suboptimal algorithms, the optimal pole p∗ is computed

with respect to an element (hc and hi respectively), whereas for the optimal

algorithm it should be computed with respect to the feasible set F , see (4.21).

In Fig. 4.2 it is sketched how the chosen pole (and hence the corresponding

subspace Mp∗) can change depending on different suboptimal algorithms.

In the next section some results on the suboptimality degree of algorithms

(4.22) and (4.25) with respect to the minimum identification error will be

provided (see also [39, 40]).
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hc

hi

h∗
cp

h∗
ip

Mp∗(hc)

Mp∗(hi)

F

Figure 4.2: Example showing how optimal subspaceMp∗ can change depending

the approximation algorithm chosen.

4.4 Suboptimal pole choice and error bounds

The aim of this section is to derive tight bounds on the identification error

provided by the projection algorithms (4.22) and (4.25), i.e. to determine the

minimum κ ≥ 1, such that

E[Φcp(y; p
∗(hc))] ≤ κ · E[Φcc(y; p

∗(F))]

for all possible y and F (and similarly for an interpolatory projection algorithm

Φip).

Before proceeding, it is useful to recall that in the conditional set membership

identification setting, several problems of interest can be restricted to the finite

dimensional space R
N . In fact, let TN denote the truncation operator in H,

such that TNh = hN , and RN be the remainder operator RNh = {h}∞i=N .
Then, under the mild assumption that RNS is a balanced set (i.e., if h ∈ RNS,
then also −h ∈ RNS), it can be shown that for any �p norm, 1 ≤ p <∞, one

has E[TNΦ] ≤ E[Φ] for any conditional algorithm Φ, model class M and
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feasible set F . Therefore, one can consider only truncated basis expansions

such as

M = {hN ∈ R
N : hN =Mpθ, θ ∈ R

n, n < N}. (4.28)

Consequently, an identification algorithm turns out to be a mapping from R
N

to an n-dimensional subspace of R
N (the truncated model class). Moreover,

one has

E[Φ,M] =

(
sup

hN∈TNF
‖hN − Φ(y)‖pp + sup

h∈S
‖RNh‖pp

)1/p

(4.29)

(in the following, dependence onM will be omitted to simplify notation). The

rightmost term in (4.29) depends only on S and can be computed a priori.

Hence, in the following, the finite-dimensional feasible set FN = TNF ⊂ R
N

will be considered, when computing the estimates Φcc(y; p
∗(FN)),Φcp(y; p

∗(hc))

and Φip(y; p
∗(hi)).

The following results are valid when the �2 identification error is considered,

i.e. ‖ · ‖H = ‖ · ‖2 (to simplify the notation, the �2 norm will be denoted by

‖ · ‖). Let us recall the Chebyshev radius of FN as rad(FN) = sup
h∈FN

‖h− hc‖,
where hc is the Chebyshev center of FN in the �2 norm. Now, the following

result can be stated.

Theorem 4.3 Let r = rad(FN) and d = ‖hc − hcp‖. Then,

E[Φcp(y; p
∗(hc))] ≤

√
2− (r − d)2

r2 + d2
· E[Φcc(y; p

∗(FN))]. (4.30)

Proof. In order to prove the theorem, the following lemma is needed (for a

proof, see [23]).

Lemma 4.3 Let hc be the Chebyshev center of FN in the �2 norm and consider

the closed halfspace Q = {h ∈ R
N : aTq h ≥ bq, aq ∈ R

N , bq ∈ R}, such that

aTq hc = bq. Then, there exists he ∈ FN

⋂Q such that ‖he − hc‖2 = rad(FN).
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Now, let us first consider E[hcp] = E[φcp(y; p
∗(hc))]. One has

E[hcp]= sup
h∈FN

‖hcp − h‖ ≤ ‖hcp − hc‖+ sup
h∈FN

‖hc − h‖ = d+ r (4.31)

with d and r defined as in the statement of Theorem 4.3.

Then, let us analyze the minimum error E[hcc] = E[φcc(y; p
∗(FN))]. Consider

the halfspace Qcc = {h ∈ R
N : (h−hc)′(hc−hcc) ≥ 0}. Lemma 4.3 guarantees

that there exists he ∈ FN

⋂Qcc such that ‖he − hc‖ = r. Therefore, one has

E[hcc]
2 ≥ ‖he − hcc‖2

= ‖he − hc‖2 + ‖hc − hcc‖2 + 2
(he − hc)′(hc − hcc)
‖he − hc‖‖hc − hcc‖

≥ ‖he − hc‖2 + d2 = r2 + d2 (4.32)

where it has been exploited the fact that ‖hc − hcc‖ ≥ d, which follows from

the definitions of hcp and d. Then, from (4.31) and (4.32) one has E[hcp]

E[hcc]
≤

r+d√
r2+d2

=
√
2− (r−d)2

r2+d2
which proves the theorem. �

It is worth remarking that Theorem 4.3 holds for any N (dimension of the

feasible set depending on the data set) and for any n (model order), n < N .

The maximum value of the bound with respect to all possible feasible sets

(i.e. with respect to all r ≥ 0, d ≥ 0) is given by the next corollary, which

follows immediately from Theorem 4.3, when r = d.

Corollary 4.1 For all FN ⊂ R
N

E[Φcp(y; p
∗(hc))] ≤

√
2 · E[Φcc(y; p

∗(FN))] .

The next theorem shows that the bound on the identification error is tight,

i.e. it is possible to find a feasible set FN and a family of model classes M(p),

depending on p, such that in (4.30) equality holds.

Theorem 4.4 Let M(p) be a family of orthonormal bases as in (4.28), with

Mp ∈ R
N×n. Assume that for some h̄ ∈ R

N , the infimum in (4.20) is achieved
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for two distinct pole vectors p∗1, p
∗
2, and let θ∗1, θ

∗
2 be the corresponding optimal

parameter vectors, so that

‖h̄−Mp∗1θ
∗
1‖ = ‖h̄−Mp∗2θ

∗
2‖ ≤ ‖h̄−Mpθ̃‖ , ∀p , ∀θ̃ ∈ R

n. (4.33)

Moreover, let (h̄ −Mp∗1θ
∗
1)

′(h̄ −Mp∗2θ
∗
2) = 0. Then, there exists a feasible set

FN ⊂ R
N such that

E[Φcp(y; p
∗(hc))] =

√
2 · E[Φcc(y; p

∗(FN))].

Proof. Let FN = {h ∈ R
N : h = h̄+α (h̄−hcp), |α| ≤ 1}, where hcp =Mp∗1θ

∗
1

has been chosen as the central projection (this choice is correct, as h̄ = cen(FN)

and (4.33) holds). Moreover, let d = ‖h̄− hcp‖. It is easy to show that

E[hcp] = sup
h∈FN

‖hcp − h‖

= ‖hcp − (h̄+ h̄− hcp)‖
= ‖2 (hcp − h̄)‖ = 2 d. (4.34)

Now, let ĥ = Mp∗2θ
∗
2. Then, from the assumptions of the theorem, one has

‖h̄− ĥ‖ = d and (h̄− ĥ)′(h̄− hcp) = 0. Therefore, it follows that

E[ĥ]2 = sup
h∈FN

‖ĥ− h‖2

= ‖(ĥ− h̄)− (hcp − h̄)‖2

= ‖ĥ− h̄‖2 + ‖hcp − h̄‖2 = 2 d2. (4.35)

Hence, from (4.34) and (4.35) one has E[hcp]

E[ĥ]
= 2 d√

2 d
=
√
2 which means that

hcc = ĥ (otherwise Theorem 4.3 would be violated) and the upper bound is

achieved. �

Example 4.2 In Fig. 4.4 it is shown a simple illustrative example (N = 2,

n = 1,m = 1); the feasible set is an ellipsoid while the adopted basis is the

Laguerre one. It is possible to note that the optimal pole relative to the central

projection is p∗(hc) � −1, while the one corresponding to the conditional center
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Figure 4.3: Example showing the different optimal subspaces and approxima-

tion errors for different estimators.

is p∗(F) � 1. It results that E[Φcp(y; p
∗(hc)] � 1.34E[Φcc(y; p

∗(hF)] which is

quite large but less than
√
2 as stated in Corollary 4.1.

A bound on the identification error can be provided also for interpolatory

projection algorithms. Unfortunately, this turns out to be much larger than

that given by Theorem 4.3.

Theorem 4.5 Let r = rad(FN) and di = ‖hi − hip‖. Then,

E[Φip(y; p
∗(hi))] ≤ min

{
2 +

di
r
, 1 +

2r

di

}
· E[Φcc(y; p

∗(FN))]. (4.36)

Proof. For any h ∈ FN one has

‖hip − h‖ ≤ ‖hip − hc‖+ ‖hc − h‖
= ‖Πnhi − hc‖+ ‖hc − h‖
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≤ ‖Πnhi − hi‖+ ‖hi − hc‖+ ‖hc − h‖
≤ di + r + ‖hc − h‖ (4.37)

where Πnhi is the projection of hi onto the linear manifold M. Then, maxi-

mizing both sides of (4.37) over h ∈ FN one gets

E[hip] ≤ di + 2r. (4.38)

On the other hand, one has that

di = ‖Πnhi − hi‖ = inf
p

inf
θ∈Rn

‖hi −Mpθ‖ ≤ inf
p

inf
θ∈Rn

sup
h̃∈FN

‖h̃−Mpθ‖ = E[hcc].

Since, by definition, r = rad(FN) ≤ suph̃∈FN
‖hcc − h̃‖ = E[hcc], one has

E[hcc] ≥ max{di, r} (4.39)

and the result follows immediately from (4.38) and (4.39). �

In order to obtain the maximum value of the bound in a worst-case setting,

one has to consider the worst interpolatory estimator, i.e. the projection of the

worst hi ∈ FN , and all possible feasible sets. This corresponds to maximizing

(4.36) with respect to all r ≥ 0, di ≥ 0, thus obtaining the bound in the next

corollary, which follows immediately from Theorem 4.5, for r = di.

Corollary 4.2 For all FN ⊂ R
N and hi ∈ FN ,

E[Φip(y; p
∗(hi))] ≤ 3 · E[Φcc(y; p

∗(FN))].

Also the above bound turns out to be tight, as one can find a feasible set FN ,

an element hi ∈ FN and a family of model classesM(p), depending on p, such

that the error of the interpolatory projection algorithm is arbitrarily close to

three times the error of the optimal algorithm Φcc.

Remark 4.1 It is interesting to compare the above results to those reported in

Section 3.4 for the case of a fixed model class M, with poles p assigned a priori.
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It has been shown that E[Φcp] ≤
√
4/3E[Φcc] and E[Φip] ≤ 2E[Φcc]; moreover,

there exist feasible sets FN and model classes M for which the equality holds.

Obviously, in this context, the ratio between the worst-case identification error

of the projection algorithms and the minimum achievable error is larger, due to

the fact that suboptimal algorithms select the poles p by optimizing over a single

element related to FN (namely hc or hi), while the minimum error is achieved

by choosing p∗(FN) as in (4.21), where the whole feasible set is considered.

Nevertheless, the bounds provided by the results in this section are useful, as

they clarify that the maximum possible gap between a “set-oriented” choice of

the poles and a choice based only on a single element is not very large. This is

especially true for the central projection algorithm, which is in turn much easier

to compute than Φcc(y; p
∗(FN)), in particular when the feasible set admits a

symmetry center.

4.4.1 Error bounds for ellipsoidal feasible sets

In some identification problems, the feasible set has a special structure that

can be exploited in the computation of bounds on the identification error. If

the noise is bounded in the �2 norm, and the a priori set S provides constraints

only on the tail RNh of the impulse response (the so-called residual a priori

information, often adopted in the literature, see e.g. [22]), the feasible system

set FN is an N -dimensional ellipsoid. Theorems 4.3 and 4.4 guarantee that

the error provided by the central projection algorithm is not greater than
√
2

times the minimum error. However, for ellipsoidal feasible sets this bound can

be further reduced, exploiting the special structure of the set.

Theorem 4.6 Let FN ⊂ R
N be an ellipsoid of center hc, and let LM and Lm

be the lengths of its maximum and minimum semi-axis, respectively. Moreover,

define d = ‖hc − hcp‖. Then,
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E[Φcp(y; p
∗(hc))]

E[Φcc(y; p∗(FN))]
≤



LM + d

LM

√
1 +

d2

L2
M−L2

m

if d <
L2
M − L2

m

Lm
or Lm = 0,

LM + d

Lm + d
if d ≥ L2

M − L2
m

Lm
and Lm > 0.

(4.40)

Moreover this upper bound is tight.

Proof. In order to prove Theorem 4.6, the following lemmas are needed.

Lemma 4.4 Let ε = {x ∈ R
N : x′Qx ≤ 1} be a non-degenerate axes-oriented

ellipsoid, such that Q = diag{qi}Ni=1, with 0 < q1 ≤ q2 ≤ . . . ≤ qN . Moreover

let B = {z ∈ R
N : z′z ≥ d , d > 0}. Define

z∗ = arg inf
z∈B

sup
x∈ε

‖z − x‖2
2. (4.41)

Then, z∗1 = 0.

Proof. W.l.o.g., it can be assumed d = 1. Moreover, it is straightforward

to show that the minimum in (4.41) is reached on the boundary of B, i.e.
‖z∗‖ = 1. From Theorem 2 in [19], one has that for any z such that z1 �= 0

max
x∈ε

‖z − x‖ = ‖(IN − λ∗Q)−1 λ∗Qz‖2, (4.42)

where λ∗ is the largest real solution of the equation

z′(IN − λQ)−2Qz − 1 = 0. (4.43)

Moreover, it is known that λ∗ >
1

q1
. Hence, using (4.42) one has that z∗ is the

solution of

inf
z: z′z=1

N∑
i=1

(
λ∗qizi
1− λ∗qi

)2

. (4.44)

Exploiting (4.43) and substituting z2
1 = 1−

N∑
i=2

z2
i into (4.44), one has

N∑
i=1

(
λ∗qizi
1− λ∗qi

)2

=

(
λ∗q1

1− λ∗q1

)2

+
N∑
i=2

{(
λ∗qi

1− λ∗qi

)2

−
(

λ∗q1
1− λ∗q1

)2
}
z2
i .
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Since q1 ≤ qi, for i ≥ 2, it is easy to show that γi �
(

λ∗qi
1−λ∗qi

)2

−
(

λ∗q1
1−λ∗q1

)2

< 0,

i = 2, . . . , N and hence the minimum in (4.44) is achieved for some z∗2 , . . . , z
∗
N

such that (z∗2)
2 + . . .+ (z∗N)

2 = 1. This implies z∗1 = 0. �

A straightforward extension of Lemma 4.4 is obtained by translating the center

of the ellipsoid ε and by rotating the ellipsoid semi-axes onto a new reference

system spanned by the orthonormal basis {v1, . . . , vN}. Hence, the next result
holds.

Lemma 4.5 Let ε = {x ∈ R
N : x = hc +

∑N
i=1 αi vi,

α2
1

L2
M
+ 1

L2
m

∑N
i=2 α

2
i ≤ 1;

hc ∈ R
N ; ‖vi‖ = 1, i = 1, . . . , N ; v′ivj = 0, i �= j; LM > Lm > 0} and

B = {z : ‖z − hc‖ ≥ d , d > 0}. Define

z∗ = arg inf
z∈B

sup
x∈ε

‖z − x‖2
2.

Then, (z∗ − hc) ∈ span{v2, . . . , vN} and ‖z∗ − hc‖ = d.

Now Theorem 4.6 can be proven. Let us first considerE[hcp]=E[φcp(y; p
∗(hc))].

One has

E[hcp] = sup
h∈FN

‖hcp− h‖ ≤ ‖hcp− hc‖+ sup
h∈FN

‖hc− h‖ = d+LM . (4.45)

Then, let us analyze the minimum error E[hcc] = E[φcc(y; p
∗(FN))]. Let FN

be an ellipsoid with the same center and axes orientation as FN , maximum

semi-axis of length LM and all other semi-axes of length Lm. By construction,

FN ⊆ FN . Moreover, FN coincides with ε in Lemma 4.5 (with v1, . . . , vN

being the directions of the semi-axes of FN). By definition of hcp in (4.22), one

has that the conditional center hcc satisfies ‖hcc−hc‖ ≥ ‖hcp−hc‖ = d. Hence
E[hcc] = suph∈FN

‖hcc−h‖ ≥ suph∈FN
‖hcc−h‖ ≥ infz: ‖z−hc‖≥d suph∈FN

‖z−
h‖. Then, from Lemma 4.5 one gets

E[hcc] ≥ sup
h∈FN

‖z∗ − h‖ (4.46)

for some z∗ such that (z∗−hc) ∈ span{v2, . . . , vN} and ‖z∗−hc‖ = d. W.l.o.g.,

assume (z∗−hc) ∈ span{vN} (a rotation of the axes v2, . . . , vN can be applied
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without affecting FN) and set z∗ = hc − d vN (the sign of vN can be chosen

arbitrarily).

First, observe that when Lm = 0 the ellipsoid FN collapses onto a segment

with extremal points h = hc ± LM v1. Then, one has ‖z∗ − h‖2 = L2
M + d2,

and hence from (4.45) and (4.46) E[hcp]

E[hcc]
≥ LM+d√

L2
M+d2

as stated in the upper part

of (4.40).

Now, let us examine the case Lm > 0. A generic point on the boundary of FN

can be written as h = hc + α1 v1 + . . .+ αN vN , where

α2
1

L2
M

+
1

L2
m

N∑
i=2

α2
i = 1. (4.47)

Then,

‖z∗ − h‖2 = ‖hc − d vN − hc − α1 v1 − . . .− αN vN‖2

= α2
1 + α

2
2 + . . .+ (αN + d)2

= α2
1

[
L2
M − L2

m

L2
M

]
+ 2αN d+ L

2
m + d2

where the last equality has been obtained by using (4.47). Exploiting the

above expression, the maximization of ‖z∗ − h‖ with respect to h ∈ FN is a

straightforward exercise that leads to

sup
h∈FN

‖z∗ − h‖ =


LM

√
1 +

d2

L2
M − L2

m

if d <
L2

M−L2
m

Lm
,

Lm + d if d ≥ L2
M−L2

m

Lm
.

(4.48)

Then, (4.40) is an immediate consequence of (4.45), (4.46) and (4.48). �

Observe that, for the ellipsoidal feasible set above, LM = rad(FN). Hence,

when Lm = 0 one obtains the same bound as in Theorem 4.3. Conversely, when

Lm tends to LM , the ratio E[Φcp]/E[Φcc] tends to 1, as expected, because for

a spherical feasible set the conditional center with respect to any M coincides

with the projection of the center of the sphere onto M.
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4.5 Simulation examples

In this section two examples are reported. In the first example, the suboptimal

pole choice performed by the central projection algorithm is compared to the

optimal one (4.21), in the case of Laguerre basis functions. The optimal model

hcc = Φcc(y; p
∗(FN)) is obtained by applying the procedure presented in [19]

for computing the conditional central estimate of an ellipsoidal feasible set,

for each model class M with fixed Laguerre pole p, and then minimizing with

respect to p via a one-dimensional gridding on the interval (−1, 1).

Example 4.3 Consider the transfer function

H(z) =
5 + 10.7 z−1 + 5.002 z−2

1 + 2.3 z−1 + 2.06 z−2 + 0.72 z−3

and let N = 50 i/o data be available, with the input uk being a unitary step.

Assume that the truncated feasible system set is given by

FN = {hN : ‖y − T (u)hN‖ ≤
√
N ε}

with noise {vk}N−1
k=0 being a Gaussian random sequence, satisfying 1√

N
‖v‖ ≤ ε,

and ε = 1.

Let hc = T−1(u) y and M be the model class given by Laguerre filters. In

Figure 4.4a, the error infθ∈Rn ‖hc−Mpθ‖ is plotted as a function of the Laguerre

pole, for different model orders n = 1, 2, 3, 4. This error clearly does not depend

on the feasible set, but just on the approximation of its center hc. The global

minimum of each curve corresponds to the pole p∗(hc) for each model order n,

which is the one picked by the central projection algorithm Φcp.

These values are reported in Table 4.2, together with the associated worst-case

identification errors E[hcp]; the latter are obviously larger than the errors at

the minima in Fig. 4.4a, which are computed only with respect to the center hc

and not to the whole set FN .
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Figure 4.4: (a) Approximation error for the center hc versus Laguerre pole,

for different model orders; (b) Worst-case error for the conditional central

algorithm versus Laguerre pole, for different model orders.
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n p∗(hc) p∗(FN) E[hcp] E[hcc] E[hcp]/E[hcc] Bound Thm. 4.6

1 −0.054 −0.910 25.0408 24.5024 1.0220 1.4069

2 −0.595 −0.567 20.8556 20.7634 1.0044 1.3573

3 −0.389 −0.361 19.6296 19.5662 1.0032 1.3223

4 −0.244 −0.491 19.1362 19.0656 1.0037 1.3045

Table 4.2: Selected poles, corresponding worst-case identification errors, actual

error ratio and upper bound provided by Theorem 4.6, for different model

orders.

Conversely, Figure 4.4b shows the worst-case error (with respect to FN) of

the conditional Chebyshev center versus the Laguerre pole. The values of the

optimal poles and the corresponding error E[hcc] are also reported in Table 4.2,

together with the ratio between the errors of suboptimal and optimal algorithm

and the upper bound provided by Theorem 4.6.

From the above example, it can be observed that the suboptimal pole p∗(hc)

selected by the central projection algorithm can be quite far from the optimal

one p∗(FN), due to the presence of local minima whose cost is close to the

global one (in Example 4.3, this happens for n = 1 and n = 4). Nevertheless,

the worst-case identification error of the suboptimal algorithm turns out to be

pretty close to the minimum achievable error E[Φcc], as shown by Table 4.2.

The next example shows that there exist conditional identification problems,

with model classM given by Laguerre expansions, for which the conditions of

Theorem 4.4 are satisfied, and hence the upper bound is actually achieved.

Example 4.4 Let M be the model class of discrete Laguerre filters, defined

as in (4.9).

Let h = l1(−0.7746) + l1(0.7746), and let us set N = 100 and n = 2. For

h̄ = TNh there are two distinct optimal Laguerre poles, given by p∗1 = −0.5773
and p∗2 = 0.5773. The corresponding optimal parameter vectors (4.23) can be
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computed as θ∗1 = M
′
p∗1
h̄ and θ∗2 = M

′
p∗2
h̄, where Mp∗i ∈ R

N×2 is the truncated

basis matrix of M, with pole p∗i . Let us choose hcp = Mp∗1θ
∗
1. Then, it can be

verified that ∀p and ∀θ̃ ∈ R
n

‖h̄− hcp‖ = ‖h̄−Mp∗2θ
∗
2‖ = 0.9129 < ‖h̄−Mpθ̃‖

and (h̄− hcp)′ (h̄−Mp∗2θ
∗
2) = 0. Therefore, due to Theorem 4.4, there exists a

feasible set for which E[hcp] =
√
2 · E[hcc].

Indeed, let FN = {x ∈ R
N : ‖x− h̄‖ ≤ 0.9129, h′(Mp∗2θ

∗
2 − h̄) = 0}.

By applying the procedure in [19] for the computation of the conditional Cheby-

shev center and minimizing with respect to p, one gets

hcc = Φcc(y; p
∗(FN)) =Mp∗2θ

∗
2.

Moreover, one has E[hcp] = 1.8258 and E[hcc] = 1.291.
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5

Optimal input design

In this chapter, the issue of choosing an appropriate input signal for a set-

membership identification experiment is described. Different approaches will

be analyzed in the set-membership framework, which depend on a priori knowl-

edge, and on the norms used to bound the noise error and to evaluate the

modelling error.

The chapter is organized as follows. In Section 5.1 an overview on general prob-

lems concerning the experiment design is reported. In Section 5.2 an approach

to set-membership optimal input design is described, under the framework of

the so-called time and model complexity. Separation between errors deriving

from experimental data and model representation is reported. Optimal input

design concerning the noise free case is also reported. In Section 5.3 some

results concerning the energy bounded noise case are described.
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5.1 Experiment design in system identification

Designing an identification experiment involves several choices. First of all,

it is essential to have some information about the system to identify, such

as input and output signals. In some cases it is not clear which signals are

to be considered as inputs and which are to be considered as outputs. This

means that one has to decide where sensors should be placed to acquire system

outputs, and which signals should be manipulated (inputs) to drive the system

during the experiment. It is worth noticing that in some cases there may be

signals associated with the process which have to be considered as inputs,

although it is not possible to manipulate them. In this case, however, it can

be useful to place sensors to measure them (if they are measurable) and to

consider them when building a model.

One more question regards the sampling time according to which measure-

ments must be made. This is an important feature since using a sample time

too large it is impossible to properly identify high frequency dynamics, while

using a too small sample time may produce a useless growth of the computa-

tional burden.

Another aspect of input design involves the experiment length, that is what is

the amount of information needed to reach a fixed level of estimate uncertainty.

It is immediate to realize that longer experiments provide better results than

shorter ones, but this happens at the expense of an increased computational

burden. Of course, the kind of system to be identified may produce some

restrictions about experiment length, due either to technological or econom-

ical constraints. In the following, we will consider input design experiments

concerning a generic N input-output pairs.

Finally, the designed inputs must be informative enough, so that the result-

ing data set is enough informative to allow a good identification procedure.
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However, also with reference to this aspect, input signal selection is not free,

depending on the kind of application. Usually, in laboratory applications,

there is a certain freedom for input choice, while severe constraints may be

met dealing with industry processes.

In the statistical approach, it is known that an input must be persistently

exciting to allow a good identification of a system. Typical input signals can

be white noise, filtered white noise, pseudo-random binary sequences (PRBS),

chirp signals, etc. For a deeper treatment about statistical input design see

[41].

In the next sections, the problem of optimal input design is reported in a

set-membership context.

5.2 Time and model complexity for fast iden-

tification

Let us consider discrete time systems with impulse response in �1[0,∞) and

let us denote the space of such systems by L, equipped with a norm ‖ · ‖L.
Consider the set of admissible inputs U bounded in �∞ norm. A system with

impulse response k acts on an input u in the usual convolution form, i.e.

y(t) =
∞∑
τ=0

k(τ)u(t− τ) + v(t) , t = 0, 1, 2, . . . (5.1)

Let us rewrite the previous equation in the following form

y(t) = (Ku)(t) + v(t) , t = 0, 1, 2, . . . (5.2)

The a priori information consists in a subset S of L to which the true system

belongs. The noise v lies in a set V bounded in the �∞ norm.

The results derived in the following are based on the next assumption.
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Assumption 5.1 S and V are convex symmetric subsets of L and �∞(−∞,∞)

respectively.

This means that k ∈ S implies −k ∈ S, and v ∈ V implies −v ∈ V.

Given an input u, the objective of fast identification is to estimate the sys-

tem to a specified accuracy in the L norm as quickly as possible, from noisy

observations of the output y. On the basis of the observations, y(t0), y(t0 +

1), . . . , y(t0 + T − 1), the location of the true kernel ktrue is narrowed down

from the a priori data set S to a smaller set. Thus, the feasible system set

turns out to be

S(y) = {k ∈ S : (Ku)(t)− y(t) = v(t) ∀t ∈ [t0, t0 + T ), ∀v ∈ V} (5.3)

In Chapter 3 and 4 it has been remarked that the Chebyshev center provides

the optimal estimate, but it is usually difficult to compute, especially when the

feasible set lies in an infinite dimensional space. For this reason, finitely param-

eterized model sets are usually adopted; in this case, the optimal estimation

algorithm is provided by the conditional Chebyshev center (see Section 3.2).

For a chosen n-parameter model set Mn, in order to study the effect of the

input and the model set on the identification process, we consider the worst-

case error

eT (u,Mn) = sup
ktrue∈S

sup
vtrue∈V

inf
kest∈M

sup
k∈S(y)

‖k − kest‖L. (5.4)

This quantity can be viewed as a sort of global error of the conditional central

algorithm. To minimize such a function (i.e. to achieve a small worst-case

identification error), the model set and the input have to be designed properly.

5.2.1 Separation of input design and model selection

The aim of this section is to separate input design from model class selection,

in order to analyze them separately.
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Definition 5.1 Let us define as inherent error the following function

δT (u) = sup{‖k‖L : k ∈ S, (Ku)(t) = v(t), v ∈ V, ∀t ∈ [t0, t0 + T )} (5.5)

Note that the inherent error can be viewed as a global error for y = 0, and

depends only on the input.

Definition 5.2 Let us define as representation error the following function

dist(S,Mn) = sup
k∈S

inf
g∈Mn

‖k − g‖L (5.6)

Note that this function depends only on the model class Mn.

The next proposition gives upper and lower bounds of eT (u,Mn) in terms of

data and representation errors [42].

Proposition 5.1 Under Assumption 5.1, it follows that

max{δT (u), dist(S,Mn)} ≤ eT (u,Mn) ≤ 3max{δT (u), dist(S,Mn)} (5.7)

Remark 5.1 Proposition 5.1 states that, once an input u0 and a model set

Mn,0 have been chosen to minimize the inherent error and the representation

error respectively, then the worst-case uncertainty eT (u0,Mn,0) is within a

factor of three the optimal one.

Remark 5.2 The worst-case identification error can be decomposed into two

terms, the inherent error and representation error. The inherent error is gen-

erated in the information process, due to lack of data and inaccurate mea-

surements, and is irreducible no matter which identification algorithm is used.

The representation error is due to inaccurate representation of the a priori

uncertainty set. It represents the loss of information during the information

processing stage.
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5.2.2 Noise free optimal input design

It is known that between the two sources of the inherent error, that is lack

of data and measurement noise, it is the former which puts the more severe

constraint on fast identification. The measurement noise can be overcome by

increasing the power of the input, a measure feasible on a short time inter-

val. On the other hand, more data can only be obtained by prolonging the

observation interval, that is by slowing down the identification process.

To isolate the effect of lack of data, in this section the optimal input design

problem in the noise free case is addressed [43]. In the following definition, the

output observation interval [t0, t0 + n) is viewed as being fixed and the input

as being optimized over this interval.

Definition 5.3 Let us define as identification n-width (or time-width) of S
the following quantity

θn(S,L) = inf
u∈U

sup{‖k‖L : k ∈ S, (Ku)(t) = 0, t ∈ [t0, t0 + n)} (5.8)

It is useful to remark that an optimal input is one for which the infimum (5.8)

is attained. Moreover, since the systems in S are time invariant, t0 can be

fixed at 0 without loss of generality.

In (5.8) it is not excluded the possibility that an optimal input might start

prior to the observation interval. Motivation about such an assumption can

be found in [42, 43].

The identification n-width characterizes the time complexity of the data ac-

quisition process in an identification problem. The inverse of the identification

n-width function is the least time needed to reduce the inherent error to a

certain predetermined level.

Let us introduce the concept of Gel’fand n-width.
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Definition 5.4 Let L be a normed linear space and S a subset of L. The

Gel’fand n-width of S in L is given by

dn(S,L) = inf
Ln

sup
k∈S ⋂ Ln

‖k‖L (5.9)

where the infimum is taken over all subspaces Ln of L of codimension n. A

subspace is said to be of codimension n if there exist n independent bounded

linear functionals f1, . . . , fn such that Ln = {k ∈ L : fi(k) = 0, i = 1, . . . , n}.

It has been shown that under a mild condition, the identification n-width

θn(S,L) is bounded below by the Gel-fand n-width dn(S,L).

Note that the Gel’fand n-width can be seen as the optimized worst-case uncer-

tainty when identification is based on n arbitrary linear measurements, whereas

in the case of the n-width θn these measurements are restricted to be n consec-

utive output values. The inverse of the Gel’fand n-width is the least number

of measurements needed to reduce the uncertainty to a predetermined value.

It will be shown in the next subsection that in many important cases the

identification n-width equals the Gel’fand n-width.

5.2.3 Optimal affine representation

Since the model set optimization over all n-parameter model is a difficult task,

in this section we restrict to choose among affine models, i.e. finite dimensional

subspaces of L.

By Definition 5.2, the minimum representation error of S by an n-dimensional

subspace is

dn(S,L) = inf
Mn⊂L

dist(S,Mn) (5.10)

This function is known as the Kolmogorov n-width of the a priori uncertainty

set S.
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Definition 5.5 The Kolmogorov n-width of S in L is given by

dn(S,L) = inf
Mn

sup
k∈S

inf
g∈Mn

‖k − g‖L (5.11)

where the infimum is taken over all n-dimensional subspaces of L. If the

infimum in (5.11) is achieved by some subspace Mn of dimension at most n,

then Mn is said to be an optimal subspace for dn(S,L).

The Kolmogorov n-width characterizes the representation complexity of an

identification problem. The inverse function of dn was called the metric di-

mension function and viewed as an appropriate measure of metric complexity

of uncertain sets in feedback systems (see [44]). It is the least dimension

needed to represent the a priori data set S within a given tolerance by linear

subspaces.

Remark 5.3 It is worthwhile to remark that each of the three notions of n-

width previously reported (Kolmogorov, Gel’fand and identification) describe

the complexity of a distinct aspect of the identification problem only. Unfor-

tunately, none of them describes the complexity of an identification problem

completely. However, it will be shown that in many special cases they coincide.

In the next proposition, upper and lower bounds of the optimal worst-case

uncertainty in terms of identification n-width and Kolmogorov n-width are

derived.

Proposition 5.2 Under Assumption 5.1, the optimal noise free worst-case

uncertainty has the following lower and upper bounds,

max{θT (S,L), dn(S,L)} ≤ inf
u∈U

inf
Mn⊂L

eT (u,Mn) ≤ 3max{θT (S,L), dn(S,L)}
(5.12)

If dT (S,L) ≤ θT (S,L), then the optimal worst-case uncertainty is bounded

below by max{dT (S,L), dn(S,L)}. It has been proved that for a priori sets
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with certain property of monotone decrease, the maximum of the two n-widths

is also an upper bound, that is

inf
u∈U

inf
Mn∈L

eT (u,Mn) = max{dT (S,L), dn(S,L)} (5.13)

Moreover, for such data sets, the three n-width coincide and therefore either

one can be used in (5.13).

In the following, some typical cases satisfying the previously described mono-

tone property are shown.

Let L = �1[0,∞), n > 0, C > 0 and 0 < r < 1. It can be shown that

1. if

S = {k ∈ L : |k(τ)| ≤ Crτ , r = 0, 1, 2, . . .} (5.14)

then

dn(S,L) = dn(S,L) = θn(S,L) = C

1− rr
n (5.15)

2. if

S =

{
k ∈ L :

∞∑
τ=0

|k(τ)| r−τ ≤ C
}

(5.16)

then

dn(S,L) = dn(S,L) = θn(S,L) = Crn (5.17)

Other cases can be found in [42, 43]. The following theorem shows that under

some hypotheses (satisfied by the previously described a priori sets) the optimal

input results to be the impulse.

Theorem 5.1 Under Assumption 5.1 and other technical conditions (see [42]),

the optimal input (in the noise free case) is an impulse applied at the start of

the observation interval, and the optimal affine model set is the FIR model

Mn = span{1, z, . . . , zn−1}.

Further details about the topics reported in this section can be found in [42, 43].
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5.3 Optimal input for energy bounded noise

In this section the problem of finding the optimal input for an identification

experiment in the energy bounded noise case is tackled. This approach differ-

entiates from that described in Section 5.2 essentially for the following aspects:

- errors are supposed to be present (no error free case) and they are

bounded in the �2 norm (energy bounded noise);

- inputs are bounded in �∞ norm;

- the number of measurements (or the time length of the experiment) is

fixed and the system impulse response is negligible for k > N . This

means that we can tackle the problem in finite dimensional spaces;

- the linear manifold M is chosen a priori, based on the knowledge on the

system.

5.3.1 Problem formulation

This approach recalls the framework introduced in Section 3.3.1. Let the model

equation be given by

y = Uh+ e (5.18)

where

- y ∈ R
N contains the N measured outputs.

- U ∈ R
N×N be the Toeplitz lower triangular matrix obtained by the input

vector u ∈ R
N as in (1.25).

The input u is constrained to be less than a specified value in �∞ norm. This

is a common constraint essentially due to input saturations. Then ‖u‖∞ ≤ δ.
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Let S be a set containing the a priori information about the system, such that

h ∈ S ⊂ R
N . Let the error e ∈ R

N be energy bounded, that is ‖e‖2 ≤ ε.

Let us define the following quantities:

- U = {U : U = toeplitz{u}, u ∈ R
N , ‖u‖∞ ≤ δ} is the set containing all

feasible input matrices.

- Bε = {e ∈ R
N : ‖e‖2 ≤ ε} is the �2-ball containing all possible errors.

- ε(c,Q) is a generic ellipsoid of center c and shape Q.

- M≡Mn = {h ∈ R
N : h =M θ , M ∈ R

N×n, θ ∈ R
n} ⊂ R

N is a generic

n-dimensional subspace of R
N (n < N), generated by an orthonormal

matrix M ∈ R
N×n.

By definition of feasible set, it follows that

F = FSSy = {h ∈ S : ‖Uh− y‖2 ≤ ε} (5.19)

The inequality ‖Uh− y‖2 ≤ ε can be rewritten as

(h− U−1y)′(U ′U)(h− U−1y) ≤ ε2 (5.20)

Equation (5.20) describes an N -dimensional ellipsoid with

- center c = U−1y = U−1(Uh+ e) = h+ U−1e;

- shape Q =
U ′U
ε2

.

According to the a priori information S and Bε (concerning h and e respec-

tively), one can introduce the set of admissible ellipsoid centers as

C = S + U−1Bε.

Then, the feasible set results

F = ε(c,Q)
⋂

S , c ∈ C and Q =
U ′U
ε2

(5.21)



96 Optimal input design

The problem to be solved consists in finding the optimal input U
∗
such that:

U
∗
(U, ε,S,M) = arg inf

U∈U

E∗(U, ε,S,M) (5.22)

where

E∗(U, ε,S,M) = sup
c∈C

inf
g∈M

sup
h∈ε(c,Q)

⋂ S
‖h− g‖H (5.23)

and ‖ · ‖H can be �1, �2, �∞.

Now, it will be shown how equations (5.22)-(5.23) can be simplified. The

following lemma states that it is not necessary that the center of the ellipsoid

lies in C in order to obtain the error E∗.

Lemma 5.1 An optimal solution of (5.23) is always achieved by some c ∈ S,
that is

E∗(U, ε,S,M) = sup
c∈C

inf
g∈M

sup
h∈ε(c,Q)

⋂ S
‖h− g‖H

= sup
c∈S

inf
g∈M

sup
h∈ε(c,Q)

⋂ S
‖h− g‖H (5.24)

Proof. It is straightforward to note that if ε1 = ε(c1, Q) , c1 /∈ S, then
there exists ε2 = ε(c2, Q) , c2 ∈ S such that (ε1

⋂S) ⊆ (ε2

⋂S). In fact, let

v ∈ (ε1

⋂S), one has ‖v−c1‖Q ≤ 1 � (v−c1)′Q−1(v−c1) ≤ 1. This imply that

there exists α ∈ [0, 1] such that c2 = αv+ (1−α)c1, , c2 ∈ ∂S. It follows that:
‖v−c2‖Q = ‖v−αv− (1−α)c1‖Q = ‖(1−α)(v−c1)‖Q = (1−α)‖v−c1‖Q ≤ 1

and the lemma is proved. �

Lemma 5.2 Let U = toeplitz{ū} an optimal solution of (5.22) such that

‖ū‖ < δ. Then another optimal solution of (5.22) is Ũ = toeplitz{ũ}, where

ũ =
ū

‖ū‖ δ.

Proof. Let ‖ū‖ = α < δ. W.l.o.g. we can suppose ε = 1.

Let V QV
′
= SV D1(U

′
U) and Ṽ Q̃ Ṽ ′ = SV D(Ũ ′Ũ). Since Ũ = δ

α
U , it

1SVD=Singular Value Decomposition
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follows that Ṽ Q̃ Ṽ ′ = SV D( δ
2

α2U
′
U) = δ2

α2 SV D(U
′
U). This means that Ṽ = V

and Q̃ = δ2

α2 Q. Let ε = ε(c, U ′
U) and ε̃ = ε(c, Ũ ′ Ũ) , c ∈ R

N ; it follows

that the two ellipsoids have the same axes orientations (since Ṽ = V ), but ε̃

is shrunk with respect to ε, because every semiaxes is reduced by a factor α
δ
.

So it follows that ε̃ ⊂ ε, and since U is an optimal solution of (5.22) also Ũ

is optimal and the lemma is proofed. �

Indeed, the previous lemma states that to find a solution of (5.22) it is sufficient

to consider only inputs such that ‖u‖ = δ.

Due to Lemma 5.1 it is possible to rewrite (5.23) as in (5.24). Since the

parameter ε affects only the shape of the ellipsoid Q, (while it does not affect

the center c), it is possible to rewrite the problem in the following way: let

η = δ
ε
and let U = {U : U = toeplitz{u} , u ∈ R

N , ‖u‖ = η}. It is easy

to note that, if U ∈ U (‖u‖ = δ) and U = U/ε, then ε
(
c, U

′
U

ε2

)
= ε(c, U ′U),

∀c ∈ R
N .

Hence, equations (5.22) and (5.23) can be rewritten as follows.

Let U = {U : U = toeplitz{u} , u ∈ R
N , ‖u‖ = η}, then:

U
∗
(U, ε,S,M) = εU∗(U,S,M) (5.25)

where

U∗(U,S,M) = arg inf
U∈U

E∗(U,S,M) (5.26)

and

E∗(U,S,M) = sup
c∈S

inf
g∈M

sup
h∈ε(c,U ′U)

⋂ S
‖h− g‖H . (5.27)

Remark 5.4 It follows that if U∗ is a solution of (5.26) (and hence U
∗
= εU∗

is solution of (5.25)), the optimal input is given by

u∗ = U∗[ε, 0, . . . , 0]′.
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5.3.2 Evaluation of worst-case error bounds

Let us now give an assumption that will hold in the following development.

Assumption 5.2 S is an orthotope centered at the origin.

The set S can be described as

S = {h = [h0, . . . , hN−1]
′ : |h0| ≤ γ0, |h1| ≤ γ1, . . . , |hN−1| ≤ γN−1}. (5.28)

It is easy to show that several kinds of a priori information can be formulated

in this way, such as FIRs of order N with exponential decay response as

S = {h : |hi| ≤Mρi , M > 0, |ρ| < 1 , i = 0, . . . , N − 1}. (5.29)

Let S and M be fixed. Then the following proposition holds.

Proposition 5.3 Let

E = inf
g∈M

sup
h∈S

‖h− g‖H (5.30)

and

E = sup
h∈S

inf
g∈M

‖h− g‖H . (5.31)

Then,

E ≤ E∗(U, ε,S,M) ≤ E (5.32)

Proof. If |u0| = ∞ the ellipsoid ε collapses into a point (its center), and

also the feasible set collapses into a point. Then, this is the condition for

which FSSy is the smallest one (it cannot be empty if a priori assumptions

are correct) and one has

E∗(|u0| =∞, ε,S,M) = sup
c∈C

inf
g∈M

sup
h∈(c

⋂ S)

‖h− g‖H =

= sup
c∈S

inf
g∈M

sup
h=c

‖h− g‖H = sup
c∈S

inf
g∈M

‖g − c‖H = E.
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If ‖u‖ → 0 (or in general ε
⋂S ≡ S):

E∗(‖u‖ → 0, ε,S,M) = sup
c∈C

inf
g∈M

sup
h∈S

‖h − g‖H = inf
g∈M

sup
h∈S

‖h − g‖H = E.

�

An illustrative example showing the two bounds for the case ‖ · ‖H = �2 is

depicted in Figure 5.1.

Remark 5.5 Note the E coincides with the so-called representation error de-

scribed in Definition 5.2, while E is the conditional radius of the set S on the

subspace M (see Section 3.2).

Remark 5.6 Note that E and E can be quite far. However, if they coincide,

this means that all inputs are equivalent. An example of such a behaviour is

reported in Figure 5.2. Moreover, in this example, it is straightforward to note

that also all one dimensional subspaces are equivalent.

The following example shows that, under Assumption 5.2, impulse input may

not be the optimal one (contrary to what stated in Theorem 5.1 for the mini-

mization of the inherent error in the noise free case).

Example 5.1 Let N = 2, δ = 1, ε = 1 and ‖ · ‖H = �2. Let M be a FIR of

order 1 and let S = {h ∈ R
2 : |h0| ≤ 1, |h1| ≤ 0.2} be the set containing the a

priori information on the impulse response. Let ui = [1 0]′ the impulse input

and us = [1 1]′ the step input. In Figure 5.3 the worst-case errors E∗
i and E∗

s

are represented for impulse and step input respectively, and it can be seen that

the impulse input is not the best one. Indeed: E∗
i =
√
(12 + 0.22) = 1.0198 = E

whereas E∗
s =

√
0.82 + 0.22 = 0.8246.

In the following propositions, the bounds E and E are evaluated.
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M

S

EE

Figure 5.1: Example (N = 2, n = 1, ‖ · ‖H = �2) showing the upper and lower

bounds.

M

S

E = E

Figure 5.2: Example (N = 2, n = 1, ‖ · ‖H = �2) in which the upper and lower

bounds coincide.
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Figure 5.3: Example in which the step input is better than the impulse input.

Proposition 5.4 Let S be defined as in (5.28) and let v be any of its vertexes.

Then

E = ‖v‖H

Proof. Since E is the conditional radius of S with respect to M, and since

M is a subspace which contains the Chebyshev center of S (origin), it follows

that E is the Chebyshev radius of S, and the conditional Chebyshev center

coincides with the origin. �

Proposition 5.5 Let S be defined as in (5.28) and let V be the set containing

all the vertexes of S, then

E = sup
v∈V

inf
g∈M

‖v − g‖H . (5.33)

Moreover, if ‖ · ‖H = �2 one has

E = sup
v∈V

‖(I −M ′M)v‖H (5.34)
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Proof. Equation (5.33) follows immediately by the fact that S is a orthotope.

If ‖ · ‖H = �2, by the projection theorem one obtains:

E = sup
h∈S

inf
g∈M

‖h− g‖H = sup
h∈S

‖h−MM ′h‖H = sup
h∈S

‖(I −MM ′)h‖H

Moreover, being S an orthotope, we have:

sup
h∈S

‖(I −MM ′)h‖H = sup
v∈V

‖(I −MM ′)v‖H

and the proposition is proofed. �

The derivation of tighter bounds and the computation of the optimality level

for certain classes of input signals is currently under development.
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Example of application

In this chapter an example of application of set-membership and statistical

identification techniques is reported. Given a physical process (DC motor)

it will be shown how to derive suitable models through system identification

techniques.

The chapter is organized as follows. In Section 6.1 a description of the phys-

ical model to be identified is shown, while in Section 6.2 the identification

results obtained by applying some deterministic and statistic identification

algorithms are addressed. In particular, one set estimator (minimum outer

box) and two point estimators (central and projection algorithms) are used for

set-membership identification, whereas the standard least squares algorithm is

used in statistical identification.

6.1 Process description

The process to be identified is a DC motor, where motor voltage is assumed

as input, while the output is the angular velocity. The process is one of those
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connected to the Automatic Control Telelab (ACT), a remote laboratory of

automatic control developed at the University of Siena which allows the remote

control and identification of physical systems. For a deeper treatment about

ACT see Part 2. All the results reported in the following have been obtained

by identification experiments performed through the Internet.

The process consists of a DC motor, a reduction unit, a tachometer and a

visualization system. A picture of the process is reported in Fig. 6.1 while a

scheme is illustrated in Fig. 6.2. The DC motor (A) generates the actuating

signal for the speed control system and the reducer (B) reduces the angular

velocity. Reducer consists in two cogwheel performing a reduction of 50 : 1.

The process is affected by two nonlinearities. The first one is given by a sat-

uration on the input command, which is constrained to belong to the interval

[−5,+5] Volts. These values are below the nominal voltage and have been

enforced for security reasons. The second nonlinearity consists in a threshold

on the output due to the presence of Coulomb friction.

6.2 Identification procedure

In this section the identification procedure used is described. The model class

used to identify the system is the ARX class. An ARX model is given by

yk =
na∑
i=1

aiyk−i +
nb∑
i=1

biuk−i + ek (6.1)

where uk is the input, yk is the output and ek is the noise. The aim of iden-

tification is to estimate the parameters ai, bi on the base of the knowledge of

the inputs {u1, . . . , uN} and of the measurements {y1, . . . , yN}.

The parameters will be estimated assuming either that the noise is UBB (set-

membership framework) or that it is a white noise with zero mean (statistical

identification).
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Figure 6.1: Picture of the DC motor.
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Figure 6.2: Electric circuit of the DC motor.
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6.2.1 Set-membership identification

This subsection presents the identification results obtained assuming that the

noise is bounded in �∞ norm, i.e.

|ek| ≤ ε ∀k. (6.2)

The problem can be described in the Information Based Complexity formalism

introduced in Chapter 1 as follows:

• X is the space of unknown parameters (of dimension na + nb) whose

generic element is

x = [a1, . . . , ana , b1, . . . , bnb
]′.

• Y is the measurements space (of dimension N − na) with elements

y = [yna+1, . . . , yN ]
′

and the noise vector e ∈ Y defined as e = [ena+1, . . . , eN ]
′ is such that

‖e‖∞ ≤ ε.

• The solution space coincides with the parameter space, that is Z = X

because S(x) = x. Moreover, since we assume that no further a priori

information is available on unknown parameters, we have K ≡ X.

The information operator is given by

F (x) =


φna

φna+1

...

φN−1

 x

where

φk = [yk, . . . , yk−na+1, uk, . . . , uk+1−nb
] (6.3)
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is the regressor vector. Since F (x) is linear, FPSy is a convex polytope.

In the following, a set estimator and two point estimators are computed.

Minimum outer box

Computing the minimum box containing the feasible set requires the solution

of 2n linear programming problems, given by supxi

inf xi
, i = 1, . . . , N (6.4)

subject to

‖y − Fx‖∞ ≤ ε (6.5)

that is  F

−F

x ≤
 y + ε

−y + ε

 . (6.6)

Central algorithm in �∞ norm

To obtain a pointwise estimate, and in particular the central algorithm in �∞

norm, it suffices to compute the geometric center of the previously determined

box, as stated in Theorem 2.2.

Projection algorithm in �∞ norm

Another estimate can be computed by the projection algorithm, previously

introduced in Definition 1.12. In this case, it is requested to solve one linear

programming problem, i.e.

xp = argmin
x∈X

‖y − Fx‖∞ (6.7)
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which equals to

[x, ε]′ = argmin
x,ε
ε subject to ‖y − Fx‖∞ ≤ ε (6.8)

when the constraint is equivalent to: F −1
−F −1

 x
ε

 ≤
 y

−y

 . (6.9)

Note that the projection estimate does not depend on ε.

Experimental results

In the following, the results of the previously described identification algo-

rithms applied to the DC motor process are reported. Six different ARX

models have been estimated. Equation (6.1) has been rearranged as follows:

Ay = Bu+ e (6.10)

where

A = [1 a1 a2 . . . ana ] , B = [0 b1 b2 . . . bnb
]

and

y = [yk yk−1 . . . yk−na ]
′ , u = [uk uk−1 . . . uk−nb

]′ , e = ek

where k = max{na, nb}+ 1, . . . , N .

The experiment has been performed using as input a Pseudo Random Binary

Sequence (PRBS) with maximum and minimum value 5 and −5, respectively.
The experiment lasted 30 seconds and the sample time was set to 0.01 second.

The time plot regarding input/output data is shown in Figure 6.3.

The first 2000 samples recorded were used for estimation while the following

1000 were used for validation of the obtained model. In particular, as valida-

tion index, the FIT on the validation data has been computed (for a deeper
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treatment see [41]). The FIT index is given by

FIT =
1− ‖ŷ − y‖2

‖y − ȳ‖2

· 100 (6.11)

where ŷ is the estimated output while ȳ is the output sample mean.
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Figure 6.3: Input/output data of the identification experiment.

Table 6.1 shows the parameter vectors obtained by using the central algorithm

in �∞ norm. The noise bound ε has been chosen as the smallest integer between

1 and 10 for which the feasible set turns out to be not empty. Note that higher

values of the noise bound ε for some models mean that the model is not

appropriate to estimate the system. From this table it is possibile to conclude

that the model which appear to be the most appropriate is for na = 2 and

nb = 2.

Table 6.2 reports the bounds relative to the model parameters provided by the

central algorithm. For example, the box containing the parameters for na = 1
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and nb = 1 is

A = [1 0.39266± 0.13082] and B = [0 0.39266± 0.29905].

Notice that for na = 2, nb = 2 the resulting box is very tight.

Finally, in Table 6.3, the parameter vectors obtained applying the projection

algorithm are reported. Again in this case, the best model seems to be for

na = 2 and nb = 2.

Time plot regarding the behaviour of estimated models vs validation data are

reported in Fig 6.4 and in Fig. 6.5 for the central algorithm and the projection

algorithm respectively.

6.2.2 Statistical identification

In this subsection the results obtained by applying statistical identification al-

gorithms are reported. Estimates are computed by the least squares algorithm,

which under suitable statistical hypotheses is optimal (see [41]).

The estimate is then given by

xLS = argmin
x∈X

‖y − Fx‖2. (6.12)

Notice that this coincides with the �2 projection algorithm in the set-membership

identification setting.

In Table 6.4 the optimal parameters vectors and the FIT index are reported.

Note that also in this case the best model is na = 2 and nb = 2 as previ-

ously achieved by set-membership estimators. Figure 6.6 shows the time plots

obtained for various model orders.
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na nb ε A B Fit

1 1 5 [ 1 -0.80501 ] [ 0 0.39266 ] 43.867 %

1 2 2 [ 1 -0.76413 ] [ 0 0.39233 0.424 ] 82.263 %

2 1 3 [ 1 -1.3505 0.48092 ] [ 0 0.39038 ] 76.567 %

2 2 1 [ 1 -1.0447 0.24862 ] [ 0 0.40592 0.31999 ] 87.8 %

1 3 2 [ 1 -0.73955 ] [ 0 0.40019 0.4516 0.13488 ] 86.03 %

3 1 3 [ 1 -1.4443 0.86735 -0.27975 ] [ 0 0.42202 ] 71.429 %

Table 6.1: Identification results concerning the central algorithm.

na nb Error bounds on ai Error bounds on bi

1 1 [ 0.13082 ] [ 0.29905 ]

1 2 [ 0.069911 ] [ 0.10384 0.11233 ]

2 1 [ 0.46552 0.38543 ] [ 0.15696 ]

2 2 [ 0.09634 0.092721 ] [ 0.04023 0.053808 ]

1 3 [ 0.11701 ] [ 0.20282 0.22117 0.22784 ]

3 1 [ 0.63177 0.97816 0.48079 ] [ 0.23269 ]

Table 6.2: Bounds on the parameters computed by the central algorithm.

na nb A B Fit

1 1 [ 1 -0.76365 ] [ 0 0.38011 ] 38.841 %

1 2 [ 1 -0.7594 ] [ 0 0.38652 0.40863 ] 80.866 %

2 1 [ 1 -1.234 0.42702 ] [ 0 0.38795 ] 62.185 %

2 2 [ 1 -1.0843 0.28293 ] [ 0 0.40737 0.3071 ] 87.014 %

1 3 [ 1 -0.7432 ] [ 0 0.38947 0.44094 0.12055 ] 86.157 %

3 1 [ 1 -1.7261 1.0115 -0.20096 ] [ 0 0.43074 ] 51.725 %

Table 6.3: Identification results concerning the projection algorithm.
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Figure 6.4: Time plot of real and estimated models validation data for different

model orders (central estimate).
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Figure 6.5: Time plot of real and estimated models for validation data for

different model orders (projection estimate).
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Figure 6.6: Time plot of real and estimated models for validation data for

different model orders (least squares estimate).
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na nb A B Fit

1 1 [ 1 -0.89271 ] [ 0 0.42607 ] 49.357 %

1 2 [ 1 -0.78973 ] [ 0 0.4098 0.4153 ] 81.087 %

2 1 [ 1 -1.408 0.58263 ] [ 0 0.41881 ] 72.787 %

2 2 [ 1 -1.0304 0.24309 ] [ 0 0.41081 0.31192 ] 88.173 %

1 3 [ 1 -0.72946 ] [ 0 0.41165 0.43558 0.12046 ] 87.251 %

3 1 [ 1 -1.6088 1.0576 -0.33604 ] [ 0 0.41896 ] 80.385 %

Table 6.4: Identification results concerning the least squares algorithm.



116 Example of application



Part II

ACT: a Remote Laboratory of

Automatic Control and

Identification





7

The Automatic Control Telelab

In this chapter, a remote laboratory of automatic control developed at the

University of Siena is described. By means of remote laboratories it is possible

to perform experiments on remote processes through the Internet (or other

networks). These kinds of labs provide several benefits compared to common

labs, and they will be described in the following.

The realized remote lab allows to perform both identification and control of a

number of physical processes. Beyond other features described in the sections

of this chapter, one distinguishing feature is that it allows to adopt much of

the set-membership identification machinery introduced in the first part of this

thesis in the process identification stage.

The chapter is organized as follows. Section 7.1 describes the state of the art of

virtual and remote laboratories. In Section 7.2 an overview of the Automatic

Control Telelab (ACT) is reported, while in Section 7.3 a complete working

session is described. Sections 7.4 and 7.5 deal with the student competition

and the remote identification respectively. Finally, an overview on the software

architecture is reported in Section 7.6.
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7.1 Remote laboratories; state of the art

Recent years have witnessed dramatic changes in graduate education because

of Internet and Web technologies. Web-based teaching, distance learning, elec-

tronic books, and interactive learning environments will play increasingly sig-

nificant roles in teaching and learning processes in the near future.

Tele-laboratories are expressions of a more general distance education which is

attracting wide attention in the academic and government communities. Ref-

erence [45] analyzes the state of the art and outlines the future perspectives

of on-line distance education in the United States. In that paper, the point

is made that the technology to meet the need of distance education is already

available, and it will further improve in the near future. Moreover, software

engineers consider on-line education as an important emerging market and,

therefore, a business opportunity. An overview of Web-based educational sys-

tems is given in [46] where an accurate description of the actual problems

concerning the design of Web-based educational systems and their possible

solutions is also provided.

In [47] Poindexter and Heck present a survey on the usage of Web-based ed-

ucational systems in the control area. In this paper, authors overview the

level of integration between Internet and control courses. Special attention

is devoted to the automatic control laboratories accessible through the Web.

Tele-laboratories are divided into two classes: virtual labs and remote labs.

The first ones are systems which can run simulations remotely with possible

animations of the controlled system. One of the first instances of virtual labs

has been developed with CGI scripts and Java applets at the University of Ed-

inburgh, Scotland [48]. The student typically connects from a remote client to

the virtual lab server, chooses the experiment, changes some parameters and

runs the simulation. Then he or she looks at the simulation results through

some graphical interface or downloaded data stored in a given format.
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The Matlab environment has been used as the core of the virtual lab in [49]

and in [50]. A plug-in is required to launch Matlab on the remote machine

from within a Web browser. The advantage of Matlab over Java is that the

first is a standard computational tool for control system applications. There-

fore, it is considered a standard tool for students of control courses so that

they do not need to learn new languages to run a virtual lab session. In fact,

several toolboxes are available in the Matlab environment for control appli-

cations, e.g. optimization, µ-control, and system identification. Standardized

Computer Aided Control System Design (CACSD) tools, mainly based on the

Matlab/Simulink environment, have been thoroughly discussed in [51]. In [50]

two more plug-ins are needed to run a virtual lab session: one is necessary

to display Matlab figures in the browser windows, and one to use the Vir-

tual Reality Modelling Language (VRML) to render the simulation results. In

[49], students can run two simulations: a magnetically levitated vehicle and

an automated highway. In [50], ball and beam, tanks’ level control, and gyro

pendulum simulations are available.

Remote labs are laboratories where students can interact with actual exper-

iments via Internet. Usually, remote operators through a Web interface can

change several control parameters, run the experiment, see the results and

download data. This situation is for instance, the case of [52], where a remote

lab for testing analog circuits is described; in [53], a remote chemical control

process is implemented, and in [54] several laboratory experiments are made

available.

The complexity of designing the hardware and software architecture of the

remote laboratory dramatically increases when one of the features required is

designing the controller within a remote Web session. One such instance is

the case of the remote lab developed at the College of Engineering of Oregon

State University [55, 56]. Here, students can remotely control a robot arm

by changing some parameters but, more interestingly, transmitting the control
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program which changes the dynamics of the closed-loop system. The student

can edit his/her own controller and paste it in an applet window. Then this

code is uploaded to the server machine of the remote lab, compiled and exe-

cuted on the robot arm, becoming an actual remote lab experiment. The user

interface consists of a graphical network application referred to as SBBT (Sec-

ond Best to Being There). The design has three main features: collaboration

with peers, active presence, and complete control of the remote experiment.

Another approach has been investigated in [57] where the user can run an

experiment using a controller which resides not only on the server but also on

the client, compiling and executing it on the user machine. In this case, some

issues about network reliability and delays have been addressed. The audio

and video feedback is very important to increase the effect of telepresence, as

shown in [58] where authors implemented an interesting pan, tilt, and zoom

control of cameras grabbing the experiments of the remote lab.

In general a remote laboratory can use a well-known software environment,

such as LabVIEW [59] or Matlab/Simulink [60, 61], but it can also use a

special purpose one, as in [62], where a flow process is analyzed.

In [63] a comparison between virtual labs and remote labs is presented. The

authors examine a common experiment (ball and beam) from these two points

of view and conclude that virtual labs are good to assimilate theory, but they

cannot replace real processes since a model is only an approximation which can-

not reproduce all the aspects of the process, such as unexpected non-linearities.

To avoid these issues, remote laboratories which allow a student to interact di-

rectly with real processes should be used; this opportunity takes a fundamental

role especially for engineering students.

From a pedagogical point of view, remote labs, allowing for designing the

whole control law, are more stimulating. Typically, the price to pay to obtain

the controller design feature is that students must learn and use new control

languages which are designed for the remote lab and cannot take advantage of
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control functions developed in other contexts.

In next sections, the realization of an automatic control remote lab, the Auto-

matic Control Telelab (ACT) developed at the University of Siena, is presented.

7.2 Features of the Automatic Control Telelab

The extension of the teaching capabilities through the Internet is at the base

of the Automatic Control Telelab project [64, 65, 66], whose home page is

reported in Fig. 7.1.

Figure 7.1: Automatic Control Telelab’s home page.

The aim of the project was to allow students to put in practice their theoretical

knowledge of control theory in an easy way and without restrictions due to

laboratory opening time and experiments availability. The ACT is accessible 24

hours a day from any computer connected to the Internet. No special software

or plug–in is required. The ACT is accessible by means of any common browser

like Netscape Navigator or Microsoft Internet Explorer. If the user wants to
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design his/her own controller, the Matlab/Simulink software is required. The

accessibility through the Internet makes the ACT a safe and effective tool for

students with disabilities.

Like most of the University labs, the ACT increases the teaching performance

of control theory classes. Students can operate as if they were in a conventional

laboratory through a full set of operations. They can take decisions on what

experiment to run and can learn from mistakes they make. Since students

perform their lab assignments through the ACT, the efficiency and the student

convenience is dramatically increased along with utilization of equipments.

The ACT remote lab is continuously upgraded with new software versions

and experiments. At the present stage, four processes are available for on–

line experiments: a DC motor, a tank for level control, a magnetic levitation

system and a two degrees–of–freedom helicopter (Fig. 7.2). The DC motor

is used to control the axis angular position or the rotation speed. The level

control process has been included because, in spite of its simplicity, it shows

nonlinear dynamics, whereas the magnetic levitation process, being nonlinear

and unstable, shows very interesting properties to be analyzed in control theory

education. Finally, the two degrees–of–freedom helicopter, being a nonlinear

unstable MIMO system, can be used in graduate control system courses.

In what follows, some of the most interesting features of the ACT are presented.

Easy–to–use interface. Simplicity of use is essential to realize an interface

that can be used by everyone [47, 67], so the user can focus his/her efforts

on interacting with the experiment without spending time to understand how

to proceed through the web site. The ACT is based on intuitive and simple

HTML pages and Java applets, that are fully supported by the latest versions

of browsers. Help pages are also provided for detailed information. It is not

required to install any browser plug–in and software locally. The use of Matlab

and Simulink is only required on the remote computer if the user wants to
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Figure 7.2: The Automatic Control Telelab’s on–line experiments.
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design his/her own controller.

Simulink based interface for controller design. This is an important distin-

guished feature of the ACT. It consists in designing a user–defined controller,

which will drive the real process, by using Simulink and all its powerful tool-

boxes. Matlab and Simulink are standard tools in the control community, and

they are adopted in many basic and advanced courses. So, being the controller

simply a Simulink model, it will not be necessary for the user to learn a new

language to implement a controller. A basic knowledge of Matlab/Simulink

environment is only required. It is the authors’ belief that a different choice

for the ACT would have discouraged users from making the effort necessary to

learn a new syntax to design the controller. Through the use of the Simulink

graphical interface and its toolboxes, it is possible to choose among a large set

of functions to build the controller. Thus it becomes very easy to design any

type of controllers to be tested, no matter if it is designed in continuous or

discrete or if it is linear or nonlinear. At the end of the experiment, the user

can download a file in the Matlab workspace format (.mat), where all data of

the experiment have been stored for off–line analysis.

Predefined and user–defined controller types. Each experiment of the remote

lab can be controlled in two ways: using a predefined or a user–defined con-

troller. In the first case, the student will choose a control law in a given list, and

then assign the value of typical parameters. For example, a student can select

a PID controller to run the experiment and choose the values of proportional,

integral and derivative coefficients.

Rather than using a predefined controller, the user can design his/her own con-

troller to drive the experiment, by means of the Simulink graphical interface,

and send it to the ACT server. A Simulink user–defined template is available

to help the remote user in this phase.

Predefined and user–defined reference types. The remote user can also choose
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what references will steer the process. He can select some references among a

given list or create new ones building a Simulink subsystem.

Controller parameter change. While an experiment is running, the ACT pro-

vides a mechanism that allows the user to change some typical controller pa-

rameters on–line (e.g. the coefficients of the PID controller). Of course, work-

ing over the Internet, parameters will be updated after the time needed by

packets to reach the ACT server. These time lags can depend on the distance,

the type of Internet connection and the network congestion. However, these

delays cannot be dangerous for the control of the process since the control law

resides in a pc directly connected to the process, as explained in Section 7.6.

The only consequence of these time lags consists in a delay between the user

parameter change request and the execution of the command.

Tunable parameters can also be included in the user–defined controller by

naming the parameter variable according to a special and simple syntax, as

described in Section 7.3.1.

Reference change. It is also possible to change the system reference while an

experiment is running. In other words, the user does not have to start a new

experiment to verify the response of the system to different input signals.

Lab presence. For effective distance learning, it is important for the user to

have the sense of presence in the laboratory. To obtain this, a live video and

on–line data plots are provided, thus it is possible for students to view the real

process while the experiment is in progress. The lab presence is the feature

which distinguishes remote labs from virtual labs which only provide software

simulations of physical processes.

Resource management and system safety. Like every remote lab, the exper-

iment hardware is controllable by one user at a time. To prevent process

monopolization, only a fixed amount of time is assigned to each experiment

session. After that time, the user is automatically disconnected and the pro-



128 The Automatic Control Telelab

cess will be ready for the next experiment. From the web page showing the

list of available experiments (Fig. 7.2) it is possible to know which processes

are ready as well as the maximum delay time regarding the busy experiments.

As regard the system safety, hardware and software saturations of actuators

are used to prevent from users dangerous operations. A check on the maximum

input reference extension is performed also. Moreover, a software instability

detection system has been provided to reveal when a system becomes unstable,

stopping it.

Simplicity to add new processes. The software and hardware architecture of

the ACT have been designed with the goal of simplifying the procedure of

connecting new processes to the remote laboratory. Note that, as far as the

software is concerned, only a Simulink model and a text file must be created

to add a new process to the ACT.

7.3 A Session Description

In this section, a typical working session is described. From the home page of

the ACT it is possible to access to general information pages, as for instance

the user guide of the laboratory and the list of the available experiments.

After choosing the experiment to run, the Control Type Interface shows up as

in Fig. 7.3. Through this interface, the user fill in a form containing personal

data (used to provide statistics about ACT users), and then he chooses the

controller to be integrated in the control loop of the remote laboratory process.

Although some predefined control laws are available, the most stimulating

experience for the user consists in synthesizing his/her own controller and

reference input signal.
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Figure 7.3: The Control Type Interface.
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7.3.1 User–defined controller

To simplify the controller design, a template model can be downloaded by the

user from the control type interface. This template is a Simulink model which

contains two subsystems, one for the controller (“ACT Controller”) and one

for the reference input (“ACT Reference”), see Fig. 7.4.

Figure 7.4: The Simulink template model for reference and controller design.

Only a very basic knowledge of the Simulink environment is required to design

the controller. The control error, output and command signals are available in

the “ACT Controller” subsystem as shown in Fig. 7.5. The task which is left

to the user is that of joining them by means of suitable blocks which define

the controller structure. Such blocks can be dropped by any Simulink toolbox

available. Moreover, it is also possible to set some “constant” and “gain” as

variable parameters which can be modified on–line while the experiment is

in progress. This interesting feature is obtained by simply using the prefix

“ACT TP ” (ACT Tuning Parameter) to name these variables as described in

the bottom window of the Simulink template in Fig. 7.5.

The “ACT Reference” subsystem of the template file (Fig. 7.6) is used to

build new references which can enter the system during the experiment. A
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Figure 7.5: The ACT Controller Simulink subsystem.

set of references is available by default, such as constant and ramp signals or

sinusoidal and square waves. The user can remove some of these blocks or add

new ones, see Fig. 7.7. To help the user in this task, other reference blocks

are provided inside the “Other References” subsystem (Fig. 7.6). However, for

advanced users, it is also possible to design special reference input signals in

the Simulink environment.

7.3.2 The tank level and magnetic levitation examples

In this section the tank level and magnetic levitation processes shown in

Fig. 7.2 are described.
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Figure 7.6: The ACT reference subsystem.

Figure 7.7: A detail of the first input block where the user can add any new

reference input signal.
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The mathematical model of the tank is

ḣ(t) = −0.008
√
h(t) + 100 q(t) (7.1)

with:

q(t) =

 0 if V (t) ≤ 3.7

1.36× 10−5 (V (t)− 3.7) if V (t) > 3.7
(7.2)

where h is the water level inside the tank, measured by a pressure transducer

on the bottom of the tank, q is the input flow and V is the voltage applied to

the pump (command). Due to a threshold on the actuator (pump) the input

flow is zero when the voltage applied is less than 3.7 Volts. Moreover an input

saturation of 8 Volts is present. Dynamics of the tank process is nonlinear.

A possible type of controller is based on the so called feedback linearization,

whose goal is to cancel the nonlinear part of (7.1) through a suitable action on

the command. Moreover, applying to the pump a constant voltage of 3.7 Volts,

the problems due to the threshold can be avoided. The Simulink model imple-

menting the feedback linearization controller is shown in Fig. 7.8. It has been

obtained from the “ACT controller” template in Fig. 7.5 by simply linking the

error, output and command nodes through suitable Simulink block functions.

Two parameters have been set to be tuned on–line. The Proportional Coef-

ficient is the proportional gain on the system error, while the Linearization

Coefficient is used to cancel (or at least reduce) the effect of the nonlinear-

ity. Since the model described in (7.1) is an approximation of the true plant,

on–line tuning of these parameters is mandatory to get better performances.

The levitation process consists of a magnetic suspension, a ball, whose height

must be controlled and an electro magnetic coil. The height of the ball is

sensed by an optical sensor. The minimum and the maximum distance of

the ball from the coil is respectively 3 cm and 7 cm. The power amplifier

supplies the coil with current that is proportional to the command voltage Vu

of the actuator. A protection circuit sets the current to zero when it goes over

3 Ampere. Let z be the height of the ball of mass m. System dynamics is
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Figure 7.8: The Simulink model representing a controller for the tank process

with tuning parameters based on feedback linearization.

simply derived as

z̈(t) = g − Fm
m

being Fm = kma
V 2

u

z2
the magnetic force and kma a system constant. A prede-

fined controller is the P.I.D. controller with a pre–filter on the reference whose

Simulink model is reported in Fig. 7.9. The coefficients of the proportional,

integral and derivative actions can be tuned while the experiment is running.

7.3.3 Running the experiments

Once the user–defined controller has been built, one must upload the controller

model to the ACT server through the send controller button (this operation is

not needed for predefined controllers). If the Simulink model does not contain

syntax errors, the Experiment Interface shows up, as in Fig. 7.10, whereby

it is possible to run the remote experiment through the start button. When

the experiment is in progress, the user can look at the signals of interest in

a window displaying the control input, the reference input and the output

along with their numerical values as shown in Fig. 7.10 about the tank level
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Figure 7.9: The P.I.D. controller for the magnetic levitation process with tun-

ing coefficients.

experiment and in Fig. 7.11 concerning the magnetic levitation experiment.

Note that in the tank level process the input reference is a sinusoidal input

while in the magnetic levitation process the step input is considered. Both

reference signals have on–line tuning parameters.

Moreover, a live video window is provided to view what is really occurring in

the remote lab. Unlike virtual laboratories, based only on software simulations,

the presence of a video window is an important feature because the user can

look at the real process, having a most sense of presence in the laboratory.

During the experiment it is possible to change references on–line, as well as

the controller parameters.

When the user stops the experiment, it is possible to download a file in Matlab

format (.mat) where all the signal dynamics have been stored. This file can

be used to perform off–line analysis (such as the evaluation of the maximum

overshoot and the settling time) as shown in the time plot in Fig. 7.12 regarding
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Figure 7.10: The Experiment Interface which allows the real execution of the

remote experiment on the tank process.
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Figure 7.11: The Experiment Interface which allows the real execution of the

remote experiment on the magnetic process.
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the magnetic levitation process.
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Figure 7.12: The time plot regarding an experiment on the magnetic levitation

system.

To avoid that a user could run an experiment for a long time (preventing the

access by other users) a time-out is implemented. When this time-out expires,

the user is automatically disconnected.

7.4 Student competition overview

A typical remote laboratory allows users to run remote experiments using

predefined or user-defined controllers. Students can run an experiment and see

the dynamic response, but in general no information on controller performances

is provided and it is not possible to know how controllers designed by other

people behave on the same process. This is one of the reasons that motivated

the building of a student competition mechanism for the ACT. Through this
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tool a student knows about performance requirements his/her own controller

must satisfy. Moreover a final ranking of the best controllers as well the time

plots of the relative experiments are provided.

In the following some features of the ACT competition structure are described.

Remote exercises: in addition to standard control synthesis exercises, this

tool allows a student to design a controller, which must satisfy some

performance requirements, and to test it on remote real processes. At

the end of the experiment, the performance indexes are automatically

computed and shown to the user; if such indexes fulfil the requirements,

the exercise is completed. An overall index is then computed (usually as

a weighted sum of the previous indexes) and the controller is included in

the ranking list.

Controller comparison: since this tool allows everybody to view the rank-

ing concerning a competition, it is possible to know what kind of con-

troller achieved better results. In addition to the type, for every con-

troller it is possible to see some data such as a description and the time

plot of the experiment. Moreover, for controllers which do not satisfy the

requirements, it is also possible to download the Simulink models of that

controllers. During the end-competition lesson, students who have de-

signed the best controllers are invited to discuss their projects, while the

lecturer shows why some control architectures work better than others.

Many competitions on the same process: it is possible to provide more

than one competition benchmark on the same process, thus increasing the

number of remote exercises available for students. Due to the software

design of the competition structure of the ACT, new benchmarks can be

added very efficiently.

It is the authors’ opinion that competition can be considered as a new useful
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tool for distance learning and, at the same time, a tool which increases the

potentiality of remote laboratories.

7.4.1 A competition session description

In this section, a competition session is described. In particular an example

of competition regarding the process of magnetic levitation (see Fig. 7.2) is

reported [68].

First of all, a student or a group of students who want to compete need to

register by filling the form shown in Fig. 7.13 and obtaining a username and a

password.

The user can analyze the mathematical model of the process (provided as a pdf

file) as well as the required performance specifications. In this example it is

required that, for a step reference, the settling time (5%) must be less than 1

second and the overshoot must be less than 40%. A more detailed description

shows also the working point of the nonlinear benchmark.

The mathematical model of this process, sketched in Fig. 7.14, is summarized

as follows 
M z̈ = M g − Fm
Fm = km

i2

z2

i = ka Vu

(7.3)

where z is the absolute distance of the center of the ball from the coil, M is

the mass of the ball, Fm is the magnetic force, i is the current in the coil, and

Vu is the input voltage of the coil (0 ≤ Vu ≤ 5); km and ka are the magnetic

constant and the input conductance respectively. The actual values of these

coefficients are reported in Table 7.1.

Equation (7.3) can be rewritten with x1 = z, x2 = ż, u = Vu (input command)
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Figure 7.13: User registration form.
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M g

Fmz

i

Vu

Figure 7.14: Sketch of the process.

M Mass of the ball 20 · 10−3 Kg

km Magnetic constant 2.058 · 10−4 N(m/A)2

ka Input conductance 0.5488 1/Ω

g Gravity acceleration 9.80665 m/s2

ky Unit conversion 100 cm/m

Table 7.1: Magnetic levitation system parameters.

and y = ky z (output in centimeters).
ẋ1 = x2

ẋ2 = g − km k
2
a

M

u2

x2
1

= g − kt u
2

x2
1

y = ky x1

By substituting the actual values of parameters in the above equations, one

obtains: 
ẋ1 = x2

ẋ2 = 9.80665− 0.0031
u2

x2
1

y = 100x1

Since the competition is based on an experiment around the state (x10 =
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0.05m, x20 = 0), students can choose to linearize dynamics ∆ẋ = A∆x + B∆u

∆y = C∆x + D∆u

It follows immediately that u0 =

√
g x2

10

kt
= 2.811, thus linearized matrices are:

A =

 0 1

2 kt u
2
0

x3
10

0

 =

 0 1

139.4389 0



B =

 0

−2 kt u0

x2
10

 =

 0

−6.9719



C = [kt 0] = [100 0] , D = [0]

Now a linear controller, such as a PID or a lead-lag compensator, can be syn-

thesized. Of course, advanced students can design controllers with nonlinear

techniques.

In order to design the controller, students must run the Simulink environment

on their own local computers, then download a template file (template.mdl)

and connect the signals describing the output, the error and the command to

design the desired controller as previously described in Section 7.3.1.

A special interface (Fig. 7.15) allows a student to describe the structure of

his/her own controller (i.e. P.I.D. Controller) and to set the sample time

of the experiment; if the controller is continuous time, the sample time is

intended as the integration step of the Simulink solver. Moreover, the user

has to specify the file containing the controller and, if needed, the Matlab

workspace file (.mat) containing essential data for that controller. Those files

will be uploaded to the server, compiled and, if no error occurs, executed on

the real remote process.
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A second graphical interface (Fig. 7.16) allows a user to start the experiment

and to observe its behaviour through plots and the live video window.

At the end of the experiment, the performance indexes are computed and are

displayed to the user. It is now possible to download a Matlab workspace

file containing the full dynamics of the experiment and to view the time plots

(Fig. 7.17). The ranking of the user controller is given as in Fig. 7.18.

Since several controllers can achieve the requested performance, an overall

index is evaluated to build the ranking. This index is obtained by weighting

each performance index. If a controller does not satisfy the requirements, the

overall index is not computed.

It is possible, for every user, to view a controller report (Fig. 7.19) where

information on ranking and other data, such as the controller description, the

nickname of the user and his/her nationality and institution, are displayed.

7.4.2 Teaching experiences

In spring 2002 undergraduate control system classes at the University of Siena

used the student competition system.

First of all, the lecturer illustrated the physical model of the magnetic levita-

tion system, emphasizing its unstable and nonlinear dynamics, and suggesting

the students to linearize dynamics to design the controller.

Since ACT is accessible at any time, students had no problems to analyze

the process and test their own controllers during the days before the second

competition class, where the lecturer answered students about their questions

and difficulties, and helped them to solve some typical problems. For example,

he suggested them to use a pre-filter on the reference to obtain smoother

command signals, and, in general, better performances.
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Figure 7.15: The interface describing the controller features.

Figure 7.16: The interface showing the running experiment.
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Figure 7.17: Time plots of the experiment.

At the end of the competition almost all the students were able to design a

satisfactory controller, and their feedback was really positive.

After an evaluation process, some conclusions about positive and negative

aspects of this experience were drawn:

positive aspects: students seemed to be very interested and excited, and

used this tool to put in practice many theoretical notions. Moreover,

everyone tried to do his/her best to obtain a good position in the rank-

ing. However, the real motivation for this kind of competition, is not

to individuate a winner, but to give students a new tool which can help

them to better understand some practical control design issues as well

as to increase their interest about control systems and technology.

negative aspects: after a first phase when students were really involved in

learning new tools for designing a good controller, many students spent
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Figure 7.18: Rank position of the controller.

Figure 7.19: Controller report.
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plenty of time to tune controller parameters just to obtain the best con-

troller in the ranking, without any additional educational improvement.

7.5 Remote system identification

In addition to the remote control of processes, ACT allows users to perform

system identification experiments. By means of this feature it is possible for

a user to choose the input signals to use during the experiment and find a

mathematical model of it through a special graphical interface.

It is possible to perform statistic as well as deterministic identification. Re-

garding statistic identification, the user can select among three models: ARX,

ARMAX and Output Error, while concerning set-membership identification

one can identify ARX models. For a thorough treatment on features of these

models see [41].

7.5.1 An identification session description

At the present stage it is possible to perform identification experiments for the

DC motor process. The aim of this task is to find a model of suitable order

which approximates the real plant. In this case, the input of the process is the

DC motor voltage, while the output is the axis velocity.

From the experiment page (Fig. 7.2), the user can choose the Identification

Experiment option so that the Identification Control Type Interface appears

as shown in Fig. 7.20.

From this interface it is possible to select the input to apply choosing among a

set of predefined inputs (e.g. white noise, sinusoidal and square waves, etc.) or

to design a user-defined one by means of a Simulink model just like described

in Section 7.3.1 about the user-defined controller.
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Figure 7.20: The Identification Control Type Interface.
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Once chosen the input signals to use, the Identification Experiment Interface

will appear as shown in Fig. 7.21.

It is now possible to start the experiment, and to change the applied input sig-

nals on-line. Different from the case when control experiments are performed,

the user is not allowed to change control parameters in the identification stage.

At the end of the experiment the Identification Panel will appear (Fig. 7.22).

Through this interface, it is possible to perform several operations in order

to obtain an identified model. In the left side of this interface the time plot

as well as the periodogram of the input/output signals are visualized. In the

bottom side it is possible to download the Matlab workspace file containing

the experiment signals, in order to perform off-line analysis. The right side

contains the actual identification interface, which allows the user to choose the

model structure of the identified model and the order of the related polynomial.

Moreover, it is possible to choose to remove mean and trend as well as to choose

how many measurements are used to perform the identification and how many

for validation purposes. Once all options are set, it is possible to start the

identification experiment by pressing the Start Identification button.

At this point, the Identification Result Interface will appear as shown in

Fig. 7.23 concerning the statistic identification of an ARX model. In the

left side of this interface it is possible to see the fitting plot (Fig. 7.24), that is

the real validation output compared with the model output, and a frequency

response of the estimated model.

In the right side, the coefficients of the identified model are reported as well as

three benchmark functions (Loss function, FPE and FIT). The user can now

decide to stop his/her identification experiment or to try a new model on the

same data.

For a complete identification example, see Section 6 in Part 1 of this thesis.
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Figure 7.21: The Identification Experiment Interface which allows the real

execution of remote identification experiments on the DC motor process.
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Figure 7.22: The Identification Panel which allows a user to choose several

identification parameters, such as the model type and order.
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Figure 7.23: The Identification Result Interface which shows the results of the

identification procedure.

Figure 7.24: The fitting plot of the identification experiment.
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7.6 The ACT Architecture

The software architecture consists of two parts: one concerns the control of the

physical process (server side) and the other relates to the user interface (client

side). Clients will connect to a general web server which contains all general

purpose information. Once chosen an experiment, this server will redirect the

connection to the pc directly connected to the process, in order to perform the

experiment. A sketch of this framework is reported in Fig. 7.25.

Figure 7.25: Client-server general scheme.

The ACT server runs on the Microsoft Windows 2000 platform and is based

on the Matlab/Simulink environment. Such an environment allows the user to

design his/her own controller through a Simulink model. The steps necessary

to get the executable file from a controller model are shown in Fig. 7.26.

The first phase consists in merging the user defined controller (control.mdl)

with a Simulink model representing the process (source.mdl). Once the out-

put model (process.mdl) has been obtained, the Matlab Real Time Workshop

(RTW) routine performs the conversion of the Simulink model in a C source
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Control.mdl Source.mdl

Process.mdl

Other Libraries

Process.exe

Merge

RTW

Figure 7.26: Integration of the user-defined controller.

file which is compiled to get an executable code. The compilation task is in-

tegrated with some libraries which allow the executable file to perform special

functions such as communications with the user and the real–time control of

the process.

The client side is essentially based on HTML pages and Java applets to guar-

antee the maximum portability across various platforms. The home page and

other descriptive pages are simply static HTML pages. The Control Type In-

terface in Fig. 7.3, which changes with the chosen experiment, has been imple-

mented as a dynamic page through the use of PHP language. The integration

of the user–defined controller in executable code, is handled by another PHP

script. All the data about experiments, user access and controllers are store in

a MySQL database. In addition to these, all data about student competitions

are store in this MySQL database as well.

The overall software architecture has been summarized in the block diagram

of Fig. 7.27. Once the executable file process.exe has been compiled, the Ex-

periment Interface window pops up onto the client machine. This interface is
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Figure 7.27: The Automatic Control Telelab software architecture.

a Java applet which allows the user to communicate with process.exe through

a TCP connection. Through this connection it is possible to change the refer-

ences and the controller parameters on–line, and to send the experimental data

over the Internet. A webcam is used to send streaming video to the remote

user. The used video software package is the Webcam32 [69].

As illustrated in Fig. 7.27, the controller (process.exe) resides on the computer

connected to the process, allowing the safe execution of the experiment despite

network delays.

Finally, it is worthwhile to stress again that the software architecture of the

ACT has been designed with the goal of simplifying the upgrading procedures

and the connection of new processes to the remote laboratory.
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